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DART: Resolving Training Biases for
Recommender Systems via

Data Discarding and Relabeling

Ningzhi Tang

(Computer Science and Engineering Department Tutor: Yuhui Shi)

[ABSTRACT]: Implicit feedback, such as clicks and purchases, is com-

monly used to train recommender systems to provide personalized recommen-

dation services. However, the collected training data may not always accurately

reflect users’ true preferences. For example, a user may be attracted to click on

news articles with flashy headlines or play music continuously without much

thought. These biases in the training data often manifest as false-positive in-

teractions and can lead to reduced recommendation performance. To alleviate

this challenge, this paper proposes DART, a model-agnostic strategy that can

be seamlessly integrated into existing recommendation models for resolving

such training biases. We identify interactions with a high training loss as biased

samples and address them by utilizing a combination of discarding and relabel-

ing techniques. To this end, we conducted extensive offline click-through rate

prediction experiments on four public datasets in various recommendation sce-

narios. Our results demonstrate that our method can accurately identify false-

positive interactions and achieve better recommendations, as well as provide

evidence for the validity and robustness of our strategy.

[Key words]: Recommender systems; Implicit feedback; Click-through rate

prediction; Training biases
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[摘要]：隐式反馈，如点击和购买，常用于训练推荐系统以提供个性化
的推荐服务。然而，它们可能并不总是准确反映用户的真实偏好。例如，

用户可能会被花哨的标题吸引而点击新闻文章，或者无意识地连续播放

音乐。这些在训练数据中的偏差通常表现为假阳性的交互，并可能导致

推荐性能降低。为了解决这个问题，我们的论文提出 DART，一种基于神

经网络记忆过程的模型独立的策略，可以无缝地集成到现有的推荐模型

中以解决训练偏差问题。我们通过识别具有高训练损失值的交互作为有

偏样本，并利用丢弃和重标签技术的组合来处理它们。为此，我们在四

个不同的涉及各种推荐场景的公共数据集上，进行了大量的点击率预测

的离线实验。我们的结果表明，DART可以准确识别假阳性交互并实现

更好的推荐。实验结果同时为我们的策略的合理性和鲁棒性提供了证据。

[关键词]：推荐系统；隐式反馈；点击率预测；训练偏差
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1. Introduction
Recommender systems play a crucial role in providing personalized recommendations

to users in navigating vast amounts of data, which are widely deployed in online services

such as E-commerce[1], social networks[2], and video-sharing platforms[3]. However, training

these systems presents a significant challenge due to data sparsity1. With millions of users

and items, there exist limited interactions between them[2]. Furthermore, explicit feedback

such as ratings and comments is scarce and difficult to collect[4]. To address this problem,

implicit feedback (e.g., click and purchase) has become the default choice for training real-

world recommender systems due to the significant volume of data available, which could

effectively alleviate the data sparsity issues[4].

Nevertheless, this approach introduces additional training biases due to the presence of

label noise in implicit feedback[5], which makes it challenging to accurately reflect users’

real preferences. This noise arises particularly in the form of false-positive interactions. For

instance, in e-commerce, a purchase may result in an unhappy usage experience instead of

a positive one. Similarly, in the news or video recommendation systems, a click with short

reading or watching time may not indicate actual user interest[5]. Users may be influenced

by other factors, such as the first impression of attractive captions[6], to make unintentional

clicks. The issue is highly critical in music recommendation scenarios, as music is usually

played in the background and users tend to provide limited explicit feedback such as likes and

dislikes[7]. The biases can lead to a distribution shift between the train distribution P (x, y)

and target distribution Q(x, y), where x is the feature vector and y is the label[8]. This shift

can ultimately reduce the accuracy of the recommender system, making it challenging to

provide personalized recommendations to users.

Moreover, if these biases are not mitigated, they can reinforce the “closed feedback loop

problem”[9], which could further reduce online prediction performance due to label noise. In

this scenario, the recommender system generates items that users might be interested in and
1https://content-garden.com/click-through-rate-prediction
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trains further recommendation models with data from users’ feedback on those items. De-

spite the challenges, there has been limited research on addressing this issue. Many existing

approaches require additional user data such as dwell time[10-11] and gaze[12] to identify noisy

samples, which can be difficult to obtain in practice. In other fields, such as computer vision,

researchers have explored various methods to improve model robustness, including analyz-

ing and modifying training loss[13-15], or using the influence function[16-17]. Similar work in

recommendation systems either has high computational complexity[9], or simply modifies

the loss function without explicitly detecting noise to improve system transparency[7-8].

Therefore, we propose DART2, a new framework for resolving training biases to de-

noise false-positive interactions in real-world data that results in more robust and person-

alized recommendations. The framework, as shown in Figure 1, consists of two stages:

biases identification and biases handling. During the biases identification stage, we model

positive interactions with higher loss as noisy samples by utilizing a dynamically adjusted

identification threshold. This approach is inspired by previous research on deep network

memorization[18] and curriculum learning[19], which suggests that neural networks learn eas-

ier samples more effectively. After identifying these noisy samples, in the biases handling

stage, we use a combination of discarding and relabeling methods to improve the quality of

our training data. Our framework is model-agnostic, making it easy to integrate into most of

the existing recommendation tasks.

Our approach draws inspiration from the idea of improving the robustness of models in

computer vision. We are pioneers in applying the idea of explicitly identifying and handling

biases to click-through rate (CTR) prediction tasks in recommendation systems. In the biases

identification stage, we introduce a new, more dynamic identification threshold that differs

from previous work, which provides a larger search space for optimization. In the biases

handling stage, we organically combine the discarding and relabeling techniques for the first

time, to enhance the diversity of our processing methods and fully leverage the advantages
2DART is the acronym for Discarding And Relabeling Training biases, which also refers to a small pointed missile

that can be thrown or fired, is indicative of the accuracy of our method in identifying biases samples.
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of both, which is simple yet effective.

We conducted extensive experiments on four different recommendation datasets and

used two classic recommendation system models to test the performance of our method and

various baselines. We investigated multiple research questions, as stated in Section 4, and

demonstrated through experimentation that DART can accurately identify noise (RQ4), im-

prove the model’s memory process (RQ2), enhance recommendation performance (RQ1),

and not harm recommendations for inactive users (RQ5). We also validated the rationality of

using model samples with higher training loss as false-positive interactions (RQ3). We also

conducted a sensitivity analysis of hyperparameters to test the robustness of DART. Our code

has been made open source and is available at https://github.com/TTangNingzhi/CS490-

DART.

0.71

0.65

0.23

? 1.44
? 1.89

0.23Interaction False-Positive DiscardingLoss Value

Identification Handling

Relabeling

Figure 1 The framework for DART: resolving training biases with biases identification and han-
dling. Positive interactions with higher loss are identified as noisy samples, which are then either
discarded or relabeled to improve the training data quality.

In this work, we make the following contributions:

• We conduct a comprehensive survey of existing literature on robust learning in recom-

mender systems. Specifically, we analyze the significance of addressing the training

biases problem in the recommendation and review the current denoising methods for

this purpose.

• We propose DART, a new framework that aims to resolve training biases from implicit

feedback in recommendation systems. It is based on previous research and is model-
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and dataset-agnostic, which means that our approach can be effortlessly integrated into

existing training frameworks.

• We conduct extensive experiments to demonstrate the effectiveness of the proposed

DART on two classic recommendation models on four datasets, specifically under the

task of CTR prediction, which outperforms all previous baselines. Furthermore, we

conduct an in-depth analysis of the training process to verify its rationality.

• We conducted a comprehensive sensitivity analysis to demonstrate the general robust-

ness of DART. Additionally, we thoroughly discussed the limitations of our method

and potential design ideas and optimization directions for future work.

The rest of this paper is organized as follows. Section 2 discusses the relevant literature.

Section 3 provides a detailed introduction to the proposed DART framework, while Section 4

describes our experiments. The sensitivity analysis of DART is presented in Section 5, fol-

lowed by the discussion in Section 6 and the conclusion in Section 7.

2. Related Work
This section provides an overview of themain related works in the field of recommender

systems. It covers classical recommender systems, with a particular focus on those trained

using deep learning techniques. Additionally, it discusses recent advancements in robust

deep learning for recommender systems, including both loss- and influence-based robust

learning.

2.1 Recommender Systems

Recommender systems are a popular technique for helping users filter out irrelevant

information and discover new items of interest. Collaborative filtering[4] is one of the most

widely used approaches, which recommends items to users based on their past interactions

with similar users or items. Factorization machines (FM)[20] extend this idea by modeling

pairwise interactions between user and item features using low-dimensional embeddings.

In recent years, deep learning-based recommender systems have gained popularity due
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to their ability to capture complex patterns in user-item interactions. NeuMF[21] makes a

combination of matrix factorization with multi-layer perceptrons to learn user and item em-

beddings. Wide&Deep[22] is a hybrid model that combines linear regression with deep neural

networks to capture both shallow and deep feature interactions. DeepFM[23] uses factoriza-

tion machines to model pairwise feature interactions and a deep neural network to capture

higher-order feature interactions.

These models can be adapted to various recommendation scenarios depending on the

task requirements. Despite their effectiveness in providing accurate recommendations, they

often suffer from training biases that can lead to inaccurate recommendations[5,8]. Therefore,

it is crucial to develop methods to mitigate these challenges and ensure that recommender

systems provide unbiased recommendations that reflect the user’s real preferences.

2.2 Robust Recommendation

Traditionally, there are two main approaches to mitigating training biases, particularly

label noise in implicit feedback[8]. One approach is to develop a separate model that predicts

false-positive interactions using additional user behaviors such as dwell time[10] and gaze

patterns[12]. Another approach is to directly incorporate these behaviors into the training

process to reduce the impact of noise[11,24]. For example, Wen et al.[25] leverage post-click

feedback such as skips and completions to improve the training and evaluation of content

recommendations. However, both methods require additional user data, which can be dif-

ficult to collect and may exacerbate data sparsity issues. For instance, many users do not

provide feedback such as likes or comments after clicking.[8] Therefore, it is important to

develop methods for resolving training biases without relying on extra feedback.

2.2.1 Loss-Based Robust Learning

The machine learning community has developed several strategies for training mod-

els robustly with noisy samples, which can provide valuable insights for designing bias-

resolving frameworks. For example, Bootstrap[13] revises the loss function to focus on the
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most confident predictions and pay less attention to inconsistent labels. F-correction[26] cor-

rects predictions by estimating a noise transition matrix using a backward and forward pro-

cedure. S-model[27] introduces a noise adaptation layer that estimates the probability of each

noisy label given the correct label and optimizes it using an EM algorithm. MentorNet[14]

dynamically learns a data-driven curriculum that provides sample weights focusing on the

correct samples. Co-teaching[15] trains two networks simultaneously and has them teach each

other to determine which data should be used for training.

All of these works take into account the impact of training loss when designing their

methods. They are typically implemented by either revising the loss function directly or by

identifying specific noisy samples. For example, Dai et al.[7] propose a dynamic weighting

scheme that utilizes model loss for bootstrap to achieve noise-corrected music recommen-

dations. Wang et al.[8] raise a training strategy called Adaptive Denoising Training (ADT),

which prunes noisy interactions in recommendation with truncated or reweighted loss. Fur-

thermore, the experiments conducted in prior studies[8,14-15] demonstrate an important impli-

cation: training samples with larger losses, which are more difficult to memorize, are more

likely to be noisy samples. Our work follows this idea and uses it to design and implement

a framework for resolving biases in recommender systems.

2.2.2 Influence-Based Robust Learning

The influence function[16] is another important concept in robust learning that was intro-

duced by Pang Wei Koh and Percy Liang. It is used to assess the impact of training samples

on validation loss, which can be measured either element-wise[16] or group-wise[28]. The

influence is calculated using the formula[16]:

ϕ(zi, zj) ≜
dl(zj, θ̂ϵ)

dϵ
|ϵ=0 = −∇θl(zj, θ̂)

TH−1

θ̂
∇θl(zi, θ̂) (1)

Here, zi and zj are training and validation samples, respectively. The Hessian ma-

trix Hθ̂ is assumed to be positive definite. θ̂ϵ represents the optimal parameter after a spe-
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cific training sample zi is upweighted by a small perturbation ϵ, which is defined as θ̂ϵ =

argminθ∈Θ L(z, θ) + ϵl (zs, θ).

The influence function has been used to reweight training samples in low-rank recom-

mendation models[8], including logistic regression (LR)[29] and FM[20]. However, despite its

theoretical guarantee and effectiveness[17], there are several challenges that limit its appli-

cability in real-world recommender systems. Firstly, computing the second-order Hessian

matrix is expensive[16-17], which can be a bottleneck for deep neural networks. Secondly,

a clean validation set is required for evaluation, which may not be feasible in noisy data

scenarios. Finally, estimating influence in deep neural networks may not be accurate due to

their complex non-linear structure[16]. Therefore, we are focusing on investigating loss-based

learning methods to improve unbiased recommendation performance.

3. Methodology
This section details DART, the training biases-resolving framework that we proposed

for the recommendation. As shown in Figure 1, the framework is separated into the biases

identification stage and the biases handling stage. Prior to that, the task statement is intro-

duced.

3.1 Task Statement

In this study, we use click-through rate (CTR) prediction[30] as the recommendation task

to evaluate the effectiveness of various biases-resolving strategies. The training dataset used

is noisy and denoted by D̄ = {(xi, ȳi)}Ni=1, where x represents a feature vector and ȳi is a

binary variable indicating whether the user clicked (1) or did not click (0) on the item. The

total number of training samples is N . The goal is to learn a function p(x|Θ) : X → Y

that predicts the CTR value. To achieve this, we aim to obtain optimal parameters Θ∗ by

minimizing the binary cross-entropy (BCE) loss over D̄.

LBCE(D̄|Θ∗) = − 1

N

∑
(x,ȳ)∈D̄

(ȳ log p(x|Θ∗) + (1− ȳ) log(1− p(x|Θ∗))) (2)

It is worth noting that the training dataset may contain a significant number of false-
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positive interactions that do not accurately reflect users’ true preferences. To address this

issue, we assume the existence of a clean dataset {(xi, y∗i )}Ni=1 that represents users’ true

preferences. False-positive interactions can be formally represented as {(xi, ȳi, y∗i )|ȳi =

1 ∧ y∗i = 0}. Our work aims to identify and handle these false-positive interactions in order

to improve the performance of the recommendation system.

3.2 Training Biases Resolving
3.2.1 Biases Identification

Numerous previous studies have extensively investigated the memorization process[18]

of deep neural networks. They have concluded that “while deep networks are capable of

memorizing noisy data, our results suggest that they tend to prioritize learning simple pat-

terns first.” Based on the observation, several works on robust learning have leveraged it to

design their denoising strategies[8,15]. The experiments conducted in these studies demon-

strate the validity of this finding. In addition, research on curriculum learning[14,19] has

shown that “humans and animals learn much better when the examples are not randomly

presented but organized in a meaningful order which illustrates gradually more concepts,

and gradually more complex ones.” This finding has inspired us to consider the importance

of organizing interactions with different levels of difficulty during the learning process.

Based on this observation, we assume that noisy data are more challenging to fit into the

networks during training. To identify these noisy interactions, we propose to use the training

loss as a proxy and assume that interactions with larger training loss are more likely to be

false positives. However, since the loss value is decreasing with training iteration T , using

a fixed threshold may not work well. Therefore, we model the threshold τ as a dynamically

adjusted handling rate related to T . Based on previous research[8,17] and our experiment

experience, the design of τ(T ) should have three key characteristics: (1) it needs to have an

upper bound to prevent excessive data loss, (2) it needs to reach the upper bound from zero

gradually, and (3) it should have a threshold value for T only after which we start to identify

false-positive interactions.
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By doing so, we can effectively distinguish between noisy and clean data while mini-

mizing the risk of losing valuable information during the learning process. The identification

threshold τ(T ) is proposed as follows:

τ(T ) = max
{
min

{
T − Ti

Tm

· τm, τm
}
, 0

}
, (3)

where τm is an upper bound that limits the threshold, Tm controls the pace at which the

threshold reaches its maximum value, and Ti controls the iteration at which we begin iden-

tifying false-positive interactions. In iteration T with the mini-batch data D̄T , we begin by

extracting all positive interactions, denoted as

D̄+
T = {(xi, ȳi)|(xi, ȳi) ∈ D̄T ∧ ȳi = 1}. (4)

We then proceed to identify any false-positive interactions using the following approach:

D̂T = argmax
D̂∈D̄+

T ,|D̂|≤τ(T )·|D̄+
T |
LBCE(D̂|Θ) (5)

which is the top τ(T ) percent of interactions with the highest loss values.

3.2.2 Biases Handling

After identifying the subset of interactions that may contain biases, we developed a

biases handling strategy that combines discarding and relabeling. (1) Discarding means

removing these biased interactions directly from the mini-batch set[8]; (2) Relabeling, which

involves flipping the identified false-positive samples to negative samples and returning them

to the mini-batch for further training.

Both discarding and relabeling strategies have been demonstrated to be effective in other

machine learning domains[15,17]. However, due to the limitations of biases identification ac-

curacy, these strategies may result in misidentification of true-positive interactions. We ob-

served that samples with relatively low loss are more likely to be misidentified than those

with high loss. Additionally, relabeling can be used as an augmentation technique to utilize
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false-positive interactions in training rather than simply removing them. It can also help the

model forget any memorization of these false interactions that may have occurred during

early stages of training. However, if true-positive samples are relabeled, the resulting harm

may be greater than that caused by discarding. Therefore, there should be a trade-off between

utilizing false-positive interactions and preserving true-positive interactions.

We set a discard/relabel percentage rate r, where the top-r identified samples are rela-

beled and the bottom-(1−r) are discarded. Our experiments demonstrate the effectiveness of

this approach. For simplicity, we typically set r to 0.5, but it can be optimized based on spe-

cific recommender system requirements. We calculate D̂Rel
T and D̂Disc

T using the following

equations.

D̂Rel
T = argmax

D̂∈D̂T ,|D̂|≤r·|D̂T |
LBCE(D̂|Θ) (6)

D̂Disc
T = D̂T − D̂Rel

T (7)

To the best of our knowledge, we are the first to organically combine these two strategies

and apply them in recommender systems. The overall process is described in Algorithm 1.

Algorithm 1 The proposed DART algorithm
Input: training dataset D̄, initial model parametersΘ0, iteration number Tmax, loss function
LBCE , hyperparameters Ti, Tm, τm, discard/relabel threshold r.

Output: optimized model parameters ΘTmax

for T ← 1 to Tmax do
Update threshold τ(T ) using hyperparameters Ti, Tm, τm ▷ Equation (3)
Sample mini-batch data D̄T from D̄
Fetch positive interactions D̄+

T ▷ Equation (4)
Identify false-positive interactions D̂+

T with threshold rate τ(T ) ▷ Equation (5)
Fetch interactions that need to be relabeled D̂Rel

T with rate r ▷ Equation (6)
Obtain remaining interactions that need to be discarded D̂Disc

T ▷ Equation (7)
Define relabeled data D̂Rel∗

T ← {(xi, 0)|(xi, 1) ∈ D̂Rel
T }

Obtain handled data D̄∗
T ← (D̄T − D̂Disc

T − D̂Rel
T ) ∪ D̂Rel∗

T

Optimize ΘT from ΘT−1 using D̄∗
T and LBCE

end for

One potential concern with handling high-loss samples is that it may limit the recom-

mender system’s ability to learn from valuable but challenging interactions. Additionally,

some true positive samples may be misidentified and prevented from being used in train-
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ing. In fact, balancing learning and biases-resolving is a trade-off when handling high-loss

samples[8], which is controlled by the threshold rate τ(T ). Our experiment also reveals the

importance of achieving high precision in identifying biases during the denoising process.

Then, we attempted to mitigate the harm caused by misidentified samples by setting the

discard/relabel rate r, which was also proven effective in our experiments.

4. Expriments
This section presents a series of extensive experiments designed to address the following

research questions (RQs):

• RQ1: How does our proposed DART compare to the base noisy training and other

state-of-the-art baselines in terms of performance?

• RQ2: How does the memorization process of true-positive and false-positive interac-

tions change when biases are resolved compared to when they are not?

• RQ3: How reasonable is it to conduct biases identification based on the magnitude of

training loss?

• RQ4: How do the precision and recall values for false-positive interactions in the bias

identification process?

• RQ5: To what extent does the design of DART impact the learning of preferences for

inactive users?

4.1 Experimental Settings
4.1.1 Datasets

We conducted offline experiments using three widely-used public datasets: MovieLens-

100K[31], Adressa[32], Book-Crossing[33], and Jester[34]. They cover a variety of recommen-

dation scenarios. To adapt it for CTR prediction, we consider the existence of interaction

records as positive samples and perform negative sampling during the training process.
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• MovieLens-100K[31]: It contains 100,000movie ratings (1-5) from 943 users on 1,682

movies, with each user rating at least 20 movies. The data was collected through the

MovieLens website3 over a seven-month period in 1997-1998. We consider ratings

greater than or equal to 3 as true-positive samples that reflect users’ true preferences,

and ratings less than 3 as false-positive samples.

• Adressa[32]: The dataset is a real-world news reading dataset that includes news arti-

cles in Norwegian from Adressavisen4. It contains both the users’ clicking and dwell

time information, making it a valuable resource for studying user behavior in news

reading. To distinguish between true-positive and false-positive samples, we treat

clicks with a dwell time of less than 10 seconds as false-positive ones[8].

• Book-Crossing[33]: The dataset is sourced from the Book-Crossing community5 and

contains book rating information. Ratings, denoted as ‘Book-Rating‘, are expressed on

a scale from 1-10, with higher values indicating higher appreciation. Implicit ratings

are expressed as 0. We consider ratings less than or equal to 6 as false positives and

ratings greater than 6 as true positives.

• Jester[34]: The dataset is collected from the Jester online joke recommender system6,

where users anonymously rate jokes on a scale ranging from -10.00 to +10.00. To

distinguish between true-positive and false-positive samples, we consider ratings less

than 0 as false positives that should not be recommended later, and ratings greater than

0 as true positives.

Table 1 provides detailed information about each dataset. It is evident that false positive

interactions constitute a significant portion of the training data in recommendation systems.

However, they do not accurately reflect user preferences, and we need to resolve them appro-

priately. Nevertheless, this information cannot be leaked during training. We only use a clean
3https://movielens.org/
4https://www.adressa.no/
5https://www.bookcrossing.com/
6http://eigentaste.berkeley.edu/
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Table 1 The statistics of datasets. TP and FP are abbreviations for True Positive and False Positive,
respectively.

Dataset #User #Item #TP #FP #FP/(#TP+#FP)

MovieLens-100K 943 1,682 55,375 44,625 0.446
Adressa 207,801 6,154 182,495 290,257 0.614

Book-Crossing 77,805 185,973 326,344 107,326 0.248
Jester 54,905 150 1,218,920 623,450 0.338

test set to verify the effectiveness of our method while keeping the training and validation

sets intact. As in previous work[2], we randomly split each dataset into training, validation,

and test sets with an 8:1:1 ratio.

4.1.2 Baselines

We evaluate the effectiveness of the proposed DART and other baseline methods on

two classical CTR models: factorization machine (FM)[20] and DeepFM[23]. We implement

both models using the torchfm7 repository. We compare our strategy with the following

baselines, all implemented using their open-source code (Bootstrap8, LCD9, ADT10) and the

same hyperparameter settings.

• Base: This refers to direct training with the biased training set without any bias-

resolving strategy.

• Clean: This refers to training with a clean training and validation set that filters out

false-positive interactions. It utilizes additional explicit feedback and serves only as a

reference.

• Bootstrap[13]: Bootstrap uses a weighted combination of predicted and original labels

as corrected labels. The Hard version uses binary predicted labels, while the Soft

version uses the output value passed through the sigmoid function.
7https://github.com/rixwew/pytorch-fm
8https://github.com/vfdev-5/BootstrappingLoss
9https://gitee.com/mindspore/models/tree/master/official/recommend/lcd
10https://github.com/WenjieWWJ/DenoisingRec
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• LCD[7]: LCD ensembles noisy labels and model outputs using a dynamic weight-

ing scheme based on the model loss to perform effective label correction. LCD-Re

reverses the weights of outputs and labels that are calculated based on loss.

• ADT[8]: ADT dynamically prunes large-loss interactions during training, which is

similar to our approach. The CE-R version reweights training samples based on pre-

diction scores, while the CE-T version truncates high-loss samples, which is similar

to our discarding strategy, but we utilized a more dynamic threshold and employed a

combination of discarding and relabeling.

4.1.3 Evaluation Metrics

CTR prediction involves predicting whether a user will click on an item or not, which

can be viewed as a binary classification problem. To evaluate the performance of the model,

we use AUC as the evaluation metric[2]. AUC measures how well the model can distinguish

between positive and negative samples regardless of the threshold, with a perfect classifier

having an AUC of 1 and a random classifier having an AUC of 0.5.

4.1.4 Hyperparameters

The proposed method uses specific hyperparameters, including an embedding size of

16 for all features initialized with Xavier[35]. DeepFM[23] has two fully-connected hidden

layers with 16 units and a dropout[36] of 0.2 and the ReLU activation function. The method

uses an Adam[37] optimizer with an initial learning rate of 0.001 and weight decay 1e-6, and

a batch size of 2048 for all datasets. The model is trained until convergence using an early

stopper with two trials. The negative sampling rate is set to 1, following the common prac-

tice[38]. All baseline methods are implemented using the code provided by their respective

authors. With respect to our bias-resolving strategy DART, we tune the hyperparameters of

the initial iteration Ti in [0, 1000, 2000], the increase iteration Tm in [5000, 10000, 20000],

the maximum threshold τm in [0.005, 0.01, 0.02], and the discard/relabel ratio r tuned in [0,
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0.25, 0.5, 0.75, 1]. All offline experiments are run on a single machine with RTX 3090 GPU

with 24GB memory.

4.2 Performance Comparison (RQ1)

Table 2 The performance of the proposed method and baselines on three datasets. The best results
are highlighted in bold, while the results worse than the Base are marked with an asterisk (*).

Method MovieLens-100K Adressa Book-Crossing Jester
∆‰

FM DeepFM FM DeepFM FM DeepFM FM DeepFM

Base 0.8204 0.8079 0.8464 0.8183 0.8139 0.7781 0.8311 0.8343 -
Clean 0.8263 0.8148 0.8589 0.8277 0.8235 0.794 0.8397 0.8465 12.399

Bootstrap-Hard 0.8208 0.8096 0.8487 0.8176* 0.8164 0.7773* 0.8313 0.8413 1.891
Bootstrap-Soft 0.8204* 0.8078* 0.8468 0.8176* 0.8145 0.7773* 0.8301* 0.8403 0.649

LCD 0.8163* 0.7882* 0.8441* 0.8155* 0.8159 0.7699* 0.8265* 0.8175* -8.659
LCD-Re 0.8215 0.81 0.8509 0.8166* 0.8168 0.781 0.8334 0.8414 3.218

ADT-CE-R 0.8205 0.8084 0.8476 0.8161* 0.8153 0.7769* 0.8303* 0.8367 0.195
ADT-CE-T 0.8205 0.8087 0.8483 0.8206 0.8162 0.7783 0.8307* 0.8375 1.576

DART-Disc 0.8205 0.8087 0.8484 0.822 0.8178 0.7873 0.8308* 0.8369 3.421
DART-Rel 0.8205 0.8089 0.8493 0.8207 0.8178 0.7875 0.8307* 0.8375 3.493
DART 0.8205 0.8089 0.8513 0.822 0.8181 0.7875 0.8315 0.8417 4.783

We validate the effectiveness of the proposed biases-resolving strategy DART, which

involves discarding and relabeling identified noise, on the CTR prediction task. We also

computed versions of DART that only use discard (r = 0) and relabel (r = 1), which we

refer to asDART-Disc andDART-Rel, respectively. The experimental results are presented in

Table 2, where∆‰represents the ratio of relative improvement averaged across all datasets.

• When using a training set that filters out false positive samples, the model’s recom-

mendation performance improved significantly compared to Base. This improvement

reflects the negative impact of false positive samples on personalized recommenda-

tions, confirming the importance of resolving training biases. However, in reality,

when using implicit feedback, there is no such clean dataset available.

• Most of the baseline denoisingmethods, includingBootstrap[13], LCD-Re[7], andADT[8],

have shown improved recommendation performance. This demonstrates the effective-

ness of robust learning based on training loss. However, LCD[7] significantly reduced

15



performance, indicating that its original dynamic weighting method may not be suit-

able for our experimental setup.

• Our proposed DART achieves the best results with an average increase of 4.783‰,

surpassing all baselines. This indicates that explicitly handling biases has the potential

to achieve better performance than implicitly weighting the loss. The significance of

this improvement lies in the fact that even a 1‰increase in real-world recommendation

AUC can result in substantial profits for companies[39].

• However, our proposed DART did not achieve the best performance across all datasets

and models. LCD-Re[7] outperformed our method in both models on MovieLens-

100K[31] and FM[20] on Jester[34] datasets. This also indicates that there is room for

improvement in our approach. In the future, it may be necessary to explore the theo-

retical boundaries of its effectiveness.

• Both DART-Disc and DART-Rel outperform the baseline methods and effectively re-

solve biases. Furthermore, our approach of combining discarding and relabeling via

parameter r provides a more flexible search space to leverage the advantages of both

techniques, resulting in superior performance across all settings.

4.3 Memorization Process (RQ2)
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Figure 2 The memorization process of base training (left), and DART (right).
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Previous research has demonstrated that neural networks find it more challenging to

memorize noisy samples than clean ones[8,14,18]. To investigate this phenomenon and validate

the effectiveness of our proposed DART, we analyze the training loss of false-positive (blue)

and true-positive interactions (green) during the training process. We use FM[20] trained on

Book-Crossing[33] as an example.

As depicted in Figure 2a, the loss of false positives is higher than that of true posi-

tives, which confirms previous findings regarding the regular pattern of network memory.

However, both losses eventually converge and the gap between them decreases. This demon-

strates that the network’s powerful memory can ultimately retain difficult samples, but at the

cost of impairing its recommendation performance.

Figure 2b illustrates that DART leads to a significant increase in the loss of false-positive

interactions as the number of training iterations increases. This finding suggests that the

model discards the memorization of harmful false-positive samples, thereby validating the

effectiveness of ourmethod. Despite this, the loss of true positives also has a notable increase,

which is due to the impact of misidentified samples. However, it can be observed that its

improvement rate is lower than that of false-positive samples. Ultimately, our method was

effective in closing the gap between the loss of true positives and false-positive samples.

In the future, it is crucial to investigate how to minimize the memory loss of misidentified

true-positive interactions.

4.4 Strategy Reasonability (RQ3)

Firstly, we analyzed the difference in loss between false-positive and true-positive inter-

actions on the validation set of Base after 2000 training iterations. The results are presented

in Figure 3. We observed that the overall loss of false-positive interactions was higher than

that of true-positive interactions (0.251 > 0.204, Student’s t-test with p-value < 0.001). This

finding supports the hypothesis proposed in Section 4.3 that false-positive interactions are

more difficult to memorize.

Next, we compared the mean loss of different ratings (1-10) on the validation set of
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Figure 3 The distribution of losses on the validation set of Base after 2000 iterations of FM trained
with Base on Book-Crossing.
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Figure 4 The average loss of different ratings on the validation set after training FM on Book-
Crossing.
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Book-Crossing[33] between Base and DART after training. The results are presented in Fig-

ure 4, which reveal the following findings:

• Under Base training, we observed a negative correlation between the average loss

value and ratings. The Pearson correlation coefficient was -0.896 (p-value < 0.001),

and the Spearman’s rank correlation coefficient was -0.855 (p-value = 0.0016 < 0.005).

This indicates that lower ratings are more difficult for the model to memorize.

• Under DART training, we observed an increase in the loss of all ratings (average in-

crease of 0.165). However, false-positive samples (ratings 1-6) showed a greater in-

crease compared to true-positives (ratings 7-10) (0.190 > 0.128). This demonstrates

that misidentified samples by DART are harmful to both types of samples, but overall

effective in achieving the goal of memorizing fewer noisy samples.

The above analysis of loss demonstrates that our strategy’s theoretical foundation, “noisy

data are more challenging to fit into the networks during training,” is also reasonable in the

context of recommendation systems. However, in the future, more methods will be needed

to minimize the impact of misidentified samples.

4.5 Identification Effectiveness (RQ4)
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Figure 5 The precision (left) and recall (right) values for false positive interactions of FM trained
with DART on Book-Crossing.

In order to evaluate the effectiveness of our biases identification method, we record
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how accurately it identifies and handles false-positive interactions[8]. We define precision as

the proportion of false-positive samples in all handled samples, and recall as the proportion

of false-positive samples that are identified in the training set. The change in precision and

recall values over the process of training is visualized in Figure 5. As a reference, we use

random handling, where the recall is equal to the handling threshold τ(T ) during training,

and the precision is equal to the proportion of noisy interactions in each training mini-batch

at every iteration.

The results in Figure 5 demonstrate that our method can effectively identify approxi-

mately 10% of false positive interactions when the identification threshold stabilizes gradu-

ally. This significantly outperforms random selection (upper bound 4%) and highlights the

effectiveness of using training loss to identify noisy samples. Ourmethod also achieves a pre-

cision of approximately 30%, which is again higher than random (about 11%). While these

results have led to improvements in recommendation performance, a considerable number of

true-positive interactions are still misidentified, and many false-positive samples remain un-

recalled. Figure 3 also illustrates that although true-positive and false-positive samples have

different distributions, they are still closely intertwined. Therefore, improving the precision

and recall of biases identification remains a key focus of this approach. Future research will

need to explore new methods for identifying and mitigating the impact of noisy samples on

recommendation systems.

4.6 Inactive User Recommendations (RQ5)

Training data in recommendation systems often exhibit a long-tail distribution, where

a small portion of users contributes to the vast majority of interaction data, while most users

only have a few interactions with items[40]. This can lead to a bias toward recommending

items to highly active users, raising fairness concerns that have been explored in previous

research. In this section, we explore whether the DART method exacerbates unfair recom-

mendations for inactive users.

Following the former studies[41-42], we divided testing users into five groups based on
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Figure 6 The recommendation performance (AUC) for users with different levels of activity of FM
trained with DART, the x-axis represents the range of user interaction numbers.

their range of interaction numbers. To ensure an equal number of positive interactions in

each group, we calculated the AUC for Base and DART training on Book-Crossing[33] and

MovieLens-100K[31] datasets. As expected, the recommendation quality was significantly

better for active users than for inactive ones, confirming the long-tail effect in recommen-

dations. Moreover, the trend of recommendation performance improvement for different

user groups varied between the two datasets, possibly due to differences in their distribu-

tion. Specifically, while the MovieLens dataset had already undergone a filtering process

for inactive users (#interaction < 20), Book-Crossing did not have such preprocessing.

Fortunately, DART improved the recommendation performance for all user groups, al-

beit to a greater extent for highly active users. Future research directions may explore how

to further improve fair recommendations through enhancements to DART.

5. Sensitivity Analysis
In this section, we conduct a systematic sensitivity analysis of the hyperparameters in-

troduced by the DART method to observe its robustness under different settings. We use the

results of training FM with DART on Book-Crossing as an example. The hyperparameters

we tune include initial iteration Ti in [0, 1000, 2000, 4000], maximum increase iteration Tm

in [5000, 10000, 20000, 40000], maximum identification threshold τm in [0.005, 0.01, 0.02,

0.04], and discard/relabel ratio r tuned in [0, 0.25, 0.5, 0.75, 1].
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Figure 7 The sensitivity analysis of FM trained on Book-Crossing with respect to different settings
of hyper-parameters.

Figure 7 shows the sensitivity of the AUC of FM[20] trained on Book-Crossing[33] to

the choice of Ti, Tm, τm and r. We also visualize its average precision and recall for false

positive identification during the last epoch of training. By observing, we can make the

following conclusions:

• Figure 7a demonstrates that the design of the initial identification iteration Ti was

effective in improving bias resolution performance, as evidenced by a positive corre-

lation within our hyperparameter range. Specifically, allowing the model to memorize

noise samples for a period at the beginning of training proved beneficial for later noise

identification.

• Figure 7b illustrates the importance of selecting an appropriate value for the maximum

increase iteration Tm. Specifically, a moderate increase rate in identification rate is

optimal, as both too rapid and too slow increases can negatively impact bias resolution
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performance.

• Figure 7c demonstrates a positive correlation between the identification threshold τm

and recommendation performance within our parameter range. Specifically, increas-

ing the threshold appropriately while maintaining a high level of precision in identi-

fication can aid in identifying noisy samples and improving recommendation perfor-

mance. However, experiments on other datasets have shown that setting τm too high

may lead to more misidentified true-positive interactions.

• As shown in Figure 7d, the setting of the discard/relabel ratio r has a generally weak

impact on recommendation performance (within 0.2 AUC). However, selecting an in-

termediate value for r (e.g., 0.25 or 0.5) to balance the trade-off between discarding

and relabeling can achieve the best results, which is consistent with our other experi-

ments.

Overall, our proposed DART is generally robust across various parameter settings and con-

sistently improves recommendation performance (Base AUC 0.8139). A larger parameter

search space provides more options for resolving biases in different recommendation sce-

narios and achieving better performance. Furthermore, the relationship between precision

and recall values and recommendation performance was not demonstrated in this experi-

ment. Overall, they maintained a stable value (except for τm, which has a natural positive

correlation with recall).

6. Discussion and Future Work
Firstly, our proposed DART framework has four hyperparameters for search: Ti, Tm,

τi, and r. Although their settings have some robustness, as shown in Section 5, they of-

fer greater potential to outperform baseline methods. However, the vast search space for

hyperparameters can lead to significant tuning efforts during real-world training and deploy-

ment. Therefore, exploring techniques used in hyperparameter optimization (HPO) could

help alleviate these issues in future work. This could potentially be combined with evolu-
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tionary computing[43] during the actual training. On the other hand, some of these parameters

may be adaptively set by exploring the distribution patterns of data. For example, in future

work, we can investigate whether the distribution of training loss is mapped to the optimal

discard/relabel ratio r to reduce the workload of hyperparameter search.

Secondly, during the early stages of training, the model must memorize some biased

interactions before it can distinguish them. This has inspired us to consider designing a

scheme to first identify biases, then reinitialize the model and train it on an unbiased training

set. This approach may have the potential to further improve recommendation performance.

One possible direction is to use two models for co-training, with one model dedicated to

identifying biases and teaching the second model, which is solely responsible for learning.

This approach is referred to as “1st-order differential teaching”. Additionally, we may intro-

duce more dedicated biases identification and teaching models that can work either serially

or parallelly (via voting) to achieve “kth-order differential teaching”. We leave these ideas

for future work.

Finally, the definition of false-positive interactions in different recommendation sce-

narios is an important aspect of evaluating the performance of bias resolution. In most cases,

it can be intuitively defined, such as considering clicks with higher ratings as true-positive

samples. However, sometimes the noise in the dataset can be complex. For example, in

music recommendation scenarios[7], a song played on repeat may be unintentional despite

having a high playtime. Defining false-positive interactions requires careful consideration

of the distribution patterns in the dataset and ultimately needs to be evaluated based on user

feedback or business interests. This is a promising research direction for industry applica-

tions.

7. Conclusion
In conclusion, our study highlights the importance of addressing training biases in rec-

ommender systems, which can significantly impact the quality of recommendations. Through

our investigation of current robust learningmethods and our proposedmodel-agnostic frame-
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work, we have shown that it is possible to effectively resolve training biases without relying

on additional user data. We propose DART, a model-agnostic two-stage algorithm that first

identifies biases based on training loss and then uses a combination of discarding and rela-

beling to handle them. Our extensive experiments demonstrate the effectiveness of DART

in denoising false-positive interactions and improving recommendation performance. Addi-

tionally, several research questions and sensitivity analyses were conducted to demonstrate

the reasonability and robustness of DART. For future work, we aim to explore methods for

mitigating the negative impact of model memorization noise and reducing the search space

for hyperparameters. Overall, our study provides valuable insights into addressing training

biases in recommender systems and lays a foundation for further research in this area.
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