
Single-shot Embedding Dimension Search in
Recommender System

Liang Qu∗†
The University of Queensland

Brisbane, QLD, Australia
l.qu1@uq.net.au

Yonghong Ye∗
WeChat, Tencent

Shenzhen, Guangdong, China
beardollye@tencent.com

Ningzhi Tang
Southern University of Science and

Technology
Shenzhen, Guangdong, China

Lixin Zhang
WeChat, Tencent

Shenzhen, Guangdong, China
lixinzhang@tencent.com

Yuhui Shi‡
Southern University of Science and

Technology
Shenzhen, Guangdong, China

shiyh@sustech.edu.cn

Hongzhi Yin‡
The University of Queensland

Brisbane, QLD, Australia
h.yin1@uq.edu.au

ABSTRACT
As a crucial component of most modern deep recommender sys-
tems, feature embedding maps high-dimensional sparse user/item
features into low-dimensional dense embeddings. However, these
embeddings are usually assigned a unified dimension, which suffers
from the following issues: (1) high memory usage and computa-
tion cost. (2) sub-optimal performance due to inferior dimension
assignments. In order to alleviate the above issues, some works
focus on automated embedding dimension search by formulating it
as hyper-parameter optimization or embedding pruning problems.
However, they either require well-designed search space for hy-
perparameters or need time-consuming optimization procedures.
In this paper, we propose a Single-Shot Embedding Dimension
Search method, called SSEDS, which can efficiently assign dimen-
sions for each feature field via a single-shot embedding pruning
operation while maintaining the recommendation accuracy of the
model. Specifically, it introduces a criterion for identifying the im-
portance of each embedding dimension for each feature field. As a
result, SSEDS could automatically obtain mixed-dimensional em-
beddings by explicitly reducing redundant embedding dimensions
based on the corresponding dimension importance ranking and the
predefined parameter budget. Furthermore, the proposed SSEDS is
model-agnostic, meaning that it could be integrated into different
base recommendation models. The extensive offline experiments
are conducted on two widely used public datasets for CTR (Click
Through Rate) prediction task, and the results demonstrate that
SSEDS can still achieve strong recommendation performance even
if it has reduced 90% parameters. Moreover, SSEDS has also been

∗Both authors contributed equally to this research.
†This work is finished when Liang Qu was an intern in WeChat, Tencent.
‡Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

deployed on the WeChat Subscription platform for practical recom-
mendation services. The 7-day online A/B test results show that
SSEDS can significantly improve the performance of the online
recommendation model while reducing resource consumption.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
embedding dimension search, embedding pruning, recommender
system, sparse learning

ACM Reference Format:
Liang Qu, Yonghong Ye, Ningzhi Tang, Lixin Zhang, Yuhui Shi, and Hongzhi
Yin. 2018. Single-shot Embedding Dimension Search in Recommender Sys-
tem. In Proceedings of Make sure to enter the correct conference title from your
rights confirmation emai (Conference acronym ’XX). ACM, New York, NY,
USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Recommender systems have been widely deployed to various sce-
narios such as advertisement [37], online shopping [3], news apps
[35], and many others [1, 2, 21, 27, 30, 32]. The typical inputs of
recommender systems are a large number of categorical (e.g., gen-
der) or numerical (e.g., age) features associated with users and
items. For example, in WeChat and Youtube platforms, more than
a billion unique user ID features are encoded as high-dimensional
sparse one-hot feature vectors. To well extract users’ preferences for
personalized recommendations, most state-of-the-art recommenda-
tion methods, such as deep neural network (DNN) based methods
[3, 4], factorization machine (FM) based methods [9, 17, 24, 28], map
these high-dimensional sparse feature vectors into low-dimensional
dense embeddings. Then these embeddings are utilized for further
feature operations (e.g., feature interactions) to make final predic-
tions. However, most of these methods set a fixed embedding dimen-
sion for all features, which could suffer from the following issues:
(1) The embeddings could contain tens of billions of parameters
resulting in high memory usage and computation cost. (2) Over-
parameterizing the low-frequency features might induce overfitting
and even unexpected noise. On the other hand, high-frequency fea-
tures need more parameters to convey fruitful information.

ar
X

iv
:2

20
4.

03
28

1v
2

 [
cs

.I
R

]
 1

5
A

pr
 2

02
2

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Nevertheless, manually setting appropriate embedding dimen-
sions for different features is intractable due to the vast amount
of candidate solutions. Thus, it is natural to think about how to
assign embedding dimensions to different features in an automated
manner, which is termed as embedding dimensions search (EDS)
problem in this paper.

The early work [8] tries to address EDS by introducing a human-
designed rule which assigns embedding dimensions according to
the popularity of features. Recently, inspired by the success of neu-
ral architecture search (NAS) [39], some works employ NAS-based
methods to handle EDS by formulating it as a hyper-parameter op-
timization (HPO) problem [36]. For example, NIS [10] and ESAPN
[19] search embedding dimensions from a set of predefined candi-
date dimensions by policy networks. DNIS [11] and AutoEmb [34]
utilize the differential architecture search (DARTS) [18] method to
enforce the search efficiency. However, this kind of method gener-
ally requires a well-designed search space for candidate embedding
dimensions and expensive optimization processes to train the can-
didates. As an alternative solution to the EDS problem, some works
[5, 20, 29] treat EDS as an embedding pruning problem, eliminating
requirements for predefining search space. Instead, they obtain the
mixed-dimensional embeddings by identifying and removing the
redundant embedding dimensions via additional mask layers with
learnable threshold parameters. However, the embedding pruning
based EDS methods need alternatively optimize threshold parame-
ters and parameters of the model itself, which is time-consuming,
thereby undermining their utility in practical recommendation ser-
vices.

To alleviate the limitations mentioned above of embedding prun-
ing based EDS methods, this paper needs to address the following
challenges: a)How to identify embedding dimensions for var-
ious feature fields? The EDS problem could be transformed into
identifying the importance of each dimension of embeddings. In
this way, we could prune those relatively unimportant dimensions
of embeddings such that the mixed dimension embeddings are au-
tomatically obtained. To this end, inspired by the weights pruning
method [15] in DNN, we address this challenge in a data-driven
manner, which introduces a criterion that could identify the impor-
tance (called saliency score) of each embedding dimension for each
feature field based on its influence on the loss function. Specifically,
we mask each embedding dimension of each feature field while
keeping the others unchanged. Then we could compute the saliency
scores of each dimension by measuring its influence on the loss
function. b) How to search embedding dimensions in an effi-
cient way? Based on the above idea, once we obtained the saliency
scores, we could rank the embedding dimensions over all feature
fields in descending order and retain a limited portion based on
the given parameter budget. However, it is prohibitively expensive
to identify the importance of each dimension one by one. Thus,
we utilize an approximation operation [14] to efficiently measure
the importance of all dimensions only in one forward-backward
pass, namely single-shot embedding pruning. Hence, one signifi-
cant advantage of SSEDS is its efficiency, which makes it suitable
for practical industry recommender systems requiring frequently
(e.g., per hour) updating models due to the real-time changes in
feature distribution. c) How to integrate the proposed SSEDS

into traditional recommendation models? The traditional rec-
ommendation models, especially FM based methods [9, 17, 24, 28],
utilize explicit feature interaction operations (e.g., the dot product)
to capture cross feature relations, requiring all embeddings to have
the same dimension. To make the proposed SSEDS be seamlessly
integrated into various traditional models, we propose first to pre-
train the traditional model in a standard way, and then obtain a
slim model with mixed-dimensional embeddings via the proposed
single-shot embedding pruning. Finally, we initialize and retrain
the slim model using the pretrained and mixed-dimensional embed-
dings, and introduce additional transform matrices for each feature
field to align dimensions for further feature interaction operations.

In summary, the main contributions of this paper are as below:
• This paper proposes an effective and efficient single-shot
embedding dimension search method, called SSEDS, which
introduces a criterion that could identify the importance of
each embedding dimension of each field only in one forward-
backward pass. In this way, the mixed-dimensional embed-
dings are efficiently obtained.
• The proposed SSEDS is model-agnostic. It proposes to utilize
linear transform matrices to align the various dimensions
for different feature fields such that SSEDS could be seam-
lessly integrated into various base recommendation models.
On the other hand, it can flexibly control the number of
pruned parameters to satisfy different requirements on the
parameter budget.
• The extensive offline experiments are conducted on two pub-
lic datasets for the CTR prediction task, and the experimen-
tal results demonstrate that SSEDS can still achieve strong
recommendation performance even if it has reduced 90%
parameters. Furthermore, SSEDS has also been deployed on
the WeChat Subscription platform for practical recommen-
dation service, and the 7-day online A/B test results show
that SSEDS can significantly improve the performance of
the online recommendation model while reducing resource
consumption.

The rest of this paper is organized as follows. Section 2 reviews
the main related work. Section 3 formulates the problem and details
the proposed SSEDS. Section 4 introduces experimental settings
and discusses experimental results, followed by a conclusion in
Section 5.

2 RELATEDWORK
This section introduces the main related works to our study, includ-
ing feature-based recommendation models, embedding dimension
search methods, and network pruning methods.

2.1 Feature-based Recommender System
The feature-based recommender system takes the high-dimensional
and sparse features from user and item as inputs and maps them
into a low-dimensional dense embedding space to better capture
users’ preference for personalized recommendations. To generate
effective representations, deep models are widely used and provide
state-of-the-art results [31]. The related works are flourishing. The
linear regression (LR) model gets extensive applications in the
early stage, which directly maps the raw features to continuous

predictions via a single fully-connected layer. Then Wide&Deep [3]
introduces an extra MLP branch for supplementing the high-level
representation. Furthermore, DeepFM [9], and XDeepFM [17] turn
eyes on modeling the concurrence of different features and propose
factorization machine (FM). Recently, more complex deep neural
layers are adopted in recommendation system, e.g., attention-based
models such as AFN [4], AutoInt [25] and InterHAt [16]. However,
these methods assign a fixed embedding dimension for all features
regardless of their heterogeneity, which could downgrade the model
performance and consume huge amount of storage and computing
resources.

2.2 Embedding Dimension Search Methods
Studies on the EDS problem could be categorized into heuristic
methods, hyper-parameter optimization (HPO) methods, and em-
bedding pruning methods. The heuristic method such as MDE [8]
allocates the embedding dimensions based on the popularity of fea-
tures. However, using such simple rules to determine the embedding
dimension suffers a loss of generality for various recommendation
tasks.

Recently, inspired by the success of neural architecture search
(NAS) [6, 39], some works model the EDS problem as HPO problems
which automatically search embedding dimensions from a prede-
fined candidate dimension set. For example, NIS [10] is the first
work to formulate the EDS as an HPO problem, which optimizes
the assignment for embedding dimensions by constantly improv-
ing the policy network with high cost on training time. Differently,
some research work [11, 19, 33, 34] propose to use the differentiable
architecture search (DARTS) [18] to enforce the search efficiency.
For example, DNIS [11] adopts a soft layer to control the signifi-
cance of each embedding dimension and prunes the unimportant
components after training. AutoDim [33] utilizes a soft and contin-
uous manner to calculate the weights over various dimensions for
feature fields, then the embedding architecture is derived from the
maximum weight. Besides, ESAPN [19] and AutoEmb [34] dynami-
cally update the embedding structure for users and items regarding
the on-time frequency as an important reference. However, HPO
based EDS methods generally require well-designed search space
for candidate embeddings and need iterative optimization proce-
dures throughout training, thereby undermining their utility in
practical recommendation services requiring high efficiency.

2.3 Network Pruning
Differently, instead of requiring predefined search space, embed-
ding pruning based EDS methods selectively remove redundant
embedding dimensions by introducing additional mask layers with
learnable threshold parameters. For example, PEP [20] designs an
adaptive threshold to filter out the redundant embedding dimen-
sions with low magnitude, and ATML [29] calibrates the breaking
point to identify the promising elements. Deeplight [5] proposes
to prune both parameters in the embedding layer and DNN layer
to solve the high-latency issues in CTR prediction. However, these
methods either fail to reach high efficiency [5, 20, 29] due to the
iterative optimization procedures or cannot strictly constrain the
sparsity level [20, 29] required by various infrastructures.

3 PROPOSED METHOD
This section will first give a problem formulation of the embedding
pruning based EDS under the given parameter budget 𝜅 for the
feature-based recommender system1 and then elaborate on the
proposed SSEDS.

3.1 Problem Formulation
The typical training data D of the feature-based recommender
system is commonly constructed from the users’ click records, and
each record (x, 𝑦) ∈ D is denoted as:

(x, 𝑦) = ({x1, x2, ..., x𝑚}, 𝑦) (1)

where x = {x1, x2, ..., x𝑚} is the raw feature vector that concate-
nates𝑚 feature fields associated with users and items, and 𝑦 is the
binary label (e.g., 1 for click and 0 for not click) describing the user’s
preference to the given item. For each feature field (e.g., occupation),
it contains a certain number of unique features (e.g., teacher, doctor
and so on), thus the feature vector x𝑖 ∈ x of the 𝑖-th field is usually
encoded as the high-dimensional sparse one-hot or multi-hot vector.
To well extract the user’s preference, most modern feature-based
recommender systems map x𝑖 ∈ R𝑛𝑖 (𝑛𝑖 is the number of unique
features in field 𝑖) into a low-dimensional dense embedding e𝑖 as
follows:

e𝑖 = V𝑖x𝑖 (2)

where V𝑖 ∈ R𝑑×𝑛𝑖 is the embedding table of the 𝑖-th feature field,
and 𝑑 is the embedding dimension shared by all fields. The whole
embedding table V = {V1,V2, ...,V𝑚} could be obtained by concate-
nating all the embedding table from each field.

Thus, the goal of a feature-based recommender system 𝑓 is to
predict the probability 𝑝 about whether the user would click on the
item as follows:

𝑝 = 𝑓 (x|V,Θ) (3)

where Θ represents other parameters of the model (e.g., parameters
in deep layers of the Wide&Deep [3] and DeepFM [9]).

Finally, in order to obtain mixed-dimensional embeddings, the
embedding pruning based EDS methods aim to identify and remove
a certain number of embedding dimensions from the whole em-
bedding table V based on the parameter budget 𝜅 ∈ (0, 1], while
minimizing the loss function as follows:

V∗, Θ∗ = arg min
V,Θ

L(V,Θ;D), 𝑠 .𝑡 . | |V∗ | |0 < 𝜅 | |V| |0 (4)

where L is the loss function (e.g., cross-entropy) , and | | · | |0 rep-
resents the 𝐿0 norm, i.e., the desired non-zero parameters in final
optimized pruned embedding table V∗.

It is worth noting that the pruning under the recommender
system scenario is different from the traditional network pruning
methods introduced in Section 2.3. The main difference is that our
method focuses on pruning embedding table V as it dominates the
vast majority of parameters of the model, instead of the model
parameters Θ focused by traditional network pruning methods.
Nevertheless, it is easy to extend our method to pruning both em-
bedding table and model parameters.

1We focus on the CTR prediction task in this paper

(a) Pretraining (c) Retraining

0 1 0… 1 0 0… 1 1 0…

Field 1 Field 2 Field m

Input layer …

𝑒!" 𝑒!# …𝑒"" 𝑒$! 𝑒$#Embedding
layer

…

Aggregation

DNN layers

𝑒"! 𝑒"# 𝑒!! 𝑒$"

Feature
interaction
layer

Prediction
layer

FM

0 1 0… 1 0 0… 1 1 0…

Field 1 Field 2 Field m

Input layer

Pruned
embeddings

…

𝑒"" 𝑒!" 𝑒!# 𝑒$" 𝑒$#…

Aggregation

Feature
interaction
layer

𝑀% ∈ ℝ&!"#×&$

𝑒$ ∈ ℝ%! $𝑒$ ∈ ℝ%"#$

$𝑒& ∈ ℝ%"#$

Prediction
layer

DNN layers

Transform

…

𝑒& ∈ ℝ%%

FM

𝑀(∈ ℝ&!"#×&%

(b) Single-shot Pruning

𝑒!" 𝑒!# …𝑒"" 𝑒$! 𝑒$#Embedding
layer

…

Aggregation

DNN layers

𝑒"! 𝑒"# 𝑒!! 𝑒$"

Feature
interaction
layer

Prediction
layer

FM

Salience
scores …

𝑒"" 𝑒!" 𝑒!# 𝑒$" 𝑒$#…

0.8 0.4 0.2 0.6 0.30.90.3 0.8 0.9

1 0 0 1 0 1 0 1 1…

Pruned
embeddings

Indicator
layer

Figure 1: The overview of SSEDS. a) The pretraining process trains traditional base models with uniform-dimensional embed-
dings. b) The single-shot pruning process identifies the salience scores of each dimension of each field and outputs mixed-
dimensional embeddings. c) The retraining process aligns the dimension for different fields and retrains the new slim model
in a standard way.

3.2 SSEDS
Figure 1 displays the overview of the proposed SSEDS that con-
tains three stages: pretraining, single-shot pruning, and retrain-
ing. Concretely, in the pretraining stage, we pretrain those tra-
ditional recommendation models with uniform-dimensional and
over-parameterized embeddings in a standard manner to make
these embeddings expressive. In the single-shot pruning stage, we
first compute the saliency scores (more on this later) for each em-
bedding dimension for each field based on its influence on the
loss function, and then the saliency scores are ranked in descend-
ing order. Thus we can sequentially remove dimensions with low
saliency scores until the parameter budget is reached. In this way,
the mixed-dimensional embeddings are automatically obtained. In
the retraining stage, since feature interaction operations (e.g., the
dot product) require embeddings to have the same dimension, we
propose to utilize additional transform matrices to align dimen-
sions for all fields, as shown in Figure 1(c). In this way, the obtained
mixed-dimensional embeddings could be seamlessly integrated into
architectures of traditional base models, which can be retrained in
a standard way. The detailed procedures of SSEDS are summarized
in Algorithm 1.

3.2.1 Pretraining. It is worth noting that SSEDS ismodel-agnostic,
which can be employed to various recommendation models like FM
[24], Wide&Deep [3] and DeepFM [9]. Therefore, we will not roll
out the details of these uniform-dimension based recommendation
methods. Instead, we will introduce the general training steps of
these models. Specifically, we need to pretrain a complete recom-
mendation model in a number of iterations before pruning, which
aims at making the elements in the embedding table V expressive.
The forward pass procedures of the base recommendation model
are abstracted as three layers including the embedding layer, the
feature interaction layer, and the prediction layer.

For each training instance (x, 𝑦), the embedding layer takes
the raw features x = {x1, x2, ..., x𝑚} as inputs, and maps it into

the embeddings e = {e1, e2, ..., e𝑚} in a field-wise manner via the
Formula (2): e𝑖 = V𝑖x𝑖 .

Then the feature interaction layer is utilized to capture the im-
plicit interacted relations among these embeddings V by the feature
interaction operations 𝑔(·) (e.g., the FM [9, 24] and the DNN [3, 9])
as follows:

z = 𝑔(V,Θ) (5)
where z is the logit which will be fed into the final prediction

layer (e.g., a sigmoid function) to obtain the prediction probability
𝑝 as follows:

𝑝 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (z) (6)
Recall that the learnable parameters in the embedding layer and

the feature interaction layer are V and Θ, respectively. The loss
function L(𝑉 ,Θ;D) (e.g., the cross-entropy loss) is designed to
measure the discrepancy between the model prediction probability
𝑝 and the ground-truth label 𝑦, which is formulated as follows:

L(𝑉 ,Θ;D) = −
∑︁

{x,𝑦 }∈D
{𝑦 · log(𝑝) + (1 − 𝑦) · log(1 − 𝑝)} (7)

By minimizing the loss L(𝑉 ,Θ;D), we can obtain the optimized
embedding table V̂ with the uniform embedding dimension 𝑑 for
all feature fields, and other optimized parameters Θ̂.

3.2.2 Single-shot Pruning. Recall that the EDS problem could be
transformed into the embedding pruning problem, i.e., identifying
and removing those relatively unimportant dimensions of embed-
dings such that mixed-dimensional embeddings are automatically
obtained. Hence, the critical problem is identifying the importance
(a.k.a. saliency scores) for each dimension. Existingmethods [20, 29]
introduce the additional mask layer with learnable threshold param-
eters to learn the importance of embedding dimensions. However,
they need alternatively optimize threshold parameters and parame-
ters of the model itself, resulting in expensive training processes.
Inspired by SNIP [15], we introduce a saliency criterion to identify
the importance of each embedding dimension of V̂𝑖 𝑗 for each field

𝑖 ∈ {1, · · · ,𝑚} and each dimension 𝑗 ∈ {1, · · · , 𝑑} independently.
In particular, we introduce an auxiliary indicator layer with binary
parameters 𝜶 = {𝜶 1,𝜶 2, ...,𝜶𝑚},𝜶 𝑖 ∈ [0, 1]𝑑×𝑛𝑖 . Then, for the de-
sired parameter budget𝜅 , we can reformulate the objective function
listed in Equation (4) as follows:

min
V̂,Θ̂

, L(V̂ ⊙ 𝜶 , Θ̂;D)

𝑠 .𝑡 . 𝜶 ∈ {0, 1}𝑑×
∑𝑚

𝑖 𝑛𝑖 , ∥𝜶 ∥0 < 𝜅 | |V| |0
(8)

where ⊙ represents the Hadamard product. Compared to Equa-
tion (4), we introduce additional indicator parameters 𝜶 which
have the same size as V̂. However, we do not attempt to directly
optimize Equation (8) but leverage 𝜶 to determine the importance
of each embedding dimension. To be specific, we can measure the
effect of the 𝑗-th dimension of the 𝑖-th field on the loss function
independently by masking it while keeping embedding values of
other dimensions unchanged, and measure the change of the loss
value, which is formulated as below:

ΔL𝑖, 𝑗 = L(V̂ ⊙ 1, Θ̂;D) − L(V̂ ⊙ (1 − 𝝐𝑖, 𝑗), Θ̂;D) (9)
where 1 is an all-1matrixwith dimension

∑𝑚
𝑖 𝑛𝑖×𝑑 , and indicator

matrix 𝝐𝑖, 𝑗 ∈ {0, 1}
∑𝑚

𝑖 𝑛𝑖×𝑑 is a binary matrix with value zero
everywhere except for the position on the 𝑗-th dimension of the
𝑖-th field. However, computing all ΔL𝑖, 𝑗 is prohibitively expensive,
which requires𝑚𝑑 forward passes over the dataset. On the other
hand, L is not differentiable with respect to 𝜶 . Inspired by the
approximation in [14, 15], we relax the binary constraint of 𝜶 to
continuous range [0, 1] such that ΔL𝑖, 𝑗 can be approximated by
the gradients 𝜕L/𝜕𝜶 𝑖, 𝑗 (denoted as𝑔𝑖, 𝑗 (V̂, Θ̂;D𝑏)) at the stationary
point 𝜶 = 1:

ΔL𝑖, 𝑗 ≈ 𝑔𝑖, 𝑗 (V̂, Θ̂;D𝑏) =
𝜕L(V̂ ⊙ 𝜶 , Θ̂;D𝑏)

𝜕𝜶 𝑖, 𝑗

����
𝜶=1

= lim
𝛿→0

L(V̂ ⊙ 𝜶 , Θ̂;D𝑏) − L(V̂ ⊙ (𝜶 − 𝛿𝝐𝑖, 𝑗), Θ̂;D𝑏)
𝛿

����
𝜶=1
(10)

In this way, we could efficiently compute all 𝑔𝑖, 𝑗 (V̂, Θ̂;D𝑏) via
only one forward-backward pass using automatic differentiation on
a mini-batch of datasetD, denoted asD𝑏 . Here, a larger magnitude
of |𝑔𝑖, 𝑗 (V̂, Θ̂;D𝑏) | means that the corresponding dimension has a
greater impact on the loss function (either positive or negative), and
should therefore be retained. Based on this hypothesis, the saliency
score s𝑖, 𝑗 of the 𝑗-th dimension of the 𝑖-th field is defined as the
normalized magnitude of |𝑔𝑖, 𝑗 (V̂, Θ̂;D𝑏) | as below:

s𝑖, 𝑗 =
|𝑔𝑖, 𝑗 (V̂, Θ̂;D𝑏) |∑𝑚

𝑖=0
∑𝑑

𝑗=0 |𝑔𝑖, 𝑗 (V̂, Θ̂;D𝑏) |
(11)

After obtaining all saliency scores 𝑠𝑖, 𝑗 , we rank them in de-
scending order, and then sequentially remove dimensions with low
saliency scores until the parameter budget 𝜅 is reached. Precisely,
the 𝜶 𝑖, 𝑗 is computed as follows:

𝜶 𝑖, 𝑗 = I(s𝑖, 𝑗 − 𝑠 ≥ 0),∀𝑖 ∈ {1, ...,𝑚}, 𝑗 ∈ {1, ..., 𝑑}
𝑠 .𝑡 . ∥𝜶 ∥0 < 𝜅 | |V| |0

(12)

where I(·) is the indicator function, and the quantile value 𝑠 is
automatically determined based on the parameter budget.

It is worth noting that the above pruning method differs from the
original network pruning method [15] in two ways. (1) We perform
the single-shot pruning operation after pretraining, instead of prior
to training as in the original one. The reason is that the embedding
tables are independent of the model architecture, which prevents us
from leveraging the architecture characteristics to perform pruning
at the initialization stage. (2) Unlike the original one performing
pruning at the weight level, which is analogous to pruning at the
feature level in our context, we prune the embedding at the field
level. The reason is that pruning at the feature level requires that
the limited data in D𝑏 must cover all unique features, which is
hard to be satisfied due to sparsity and long-tail characteristics of
features in recommender systems.

3.2.3 Retraining. After pruning, the mixed-dimensional embed-
ding table V̄ = {V̄1, · · · , V̄𝑞}𝑞≤𝑚 2, V̄𝑖 ∈ R𝑑𝑖×𝑛𝑖 , are automatically
obtained, where 𝑑𝑖 is the searched dimension for the 𝑖-th field, and
𝑞 is the number of fields after pruning. However, traditional rec-
ommendation models such as FM [24] and DeepFM [9] require the
dimensional consistency among input embeddings due to feature
interaction operations (e.g., the dot product). In order to make the
pruned embeddings be seamlessly integrated into various model
architectures. We need to align embedding dimensions among dif-
ferent fields, which has been studied in previous works. For exam-
ple, FmFM [26] introduces additional 𝑞 (𝑞−1)

2 matrices to align the
dimensions for each pair of embeddings from different fields. Differ-
ently, inspired by the work in [11, 33], we utilize a simple yet effect
method to align the dimension. Specifically, we only introduce 𝑞
field-wise transform matrices M = {M1, ...,M𝑞},M𝑖 ∈ R𝑑𝑚𝑎𝑥×𝑑𝑖 ,
where 𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝑑1, · · · , 𝑑𝑞) is the aligned embedding dimen-
sion equaling to the maximum dimension among all searched di-
mensions. Thus, we can get the aligned embedding ē𝑖 ∈ R𝑑𝑚𝑎𝑥 for
feature x𝑖 as below:

ē𝑖 = M𝑖 V̄𝑖x𝑖 (13)
Notice that we only introduce a tiny number of additional pa-

rameters, far less than those reduced embeddings. What’s more, M𝑖

can boost the representation of the pruned embeddings V̄: 1) they
are projected into a high-dimensional space with more perspectives
for expression 2) M𝑖 is shared for all feature instances in field 𝑖 ,
and thus their common attributes can be further modeled. After
alignment, the dot product operation < · > of traditional recom-
mendation models between features in the 𝑖-th field and the 𝑗-th
field can be performed as follows:

< ē𝑖 , ē𝑗 > (14)

Besides dot product operation, the pruned embeddings are also
easily adaptable to other feature interaction operations. For exam-
ple, the DNN layer [3, 9] only needs to adjust the dimension of the
input layer to match the dimension of the output of the embedding
layer.

After aligning, we need to retrain the pruned embedding table
V̄, transform matrices M, and other model parameters Θ̄ of the
resulting slim model. According to the Lottery Ticket Hypothesis
[7], there exists a sub-model whose accuracy can match the original
model after training for the same number of steps from scratch, and
2𝑞 ≤𝑚 means that all dimensions of some fields are pruned, which also demonstrates
that our method could be utilized to select important features automatically.

such a sub-model is called theWinning Ticket. Moreover, compared
to random initialization, restoring the parameters of the sub-model
from the original well-trained model can further boost the perfor-
mance. This theory inspires us to initialize the slim model using
the pruned embedding table V̂, and randomly initialize other model
parameters, i.e., M.

Algorithm 1 The proposed SSEDS algorithm

Require: Training datasetD, base model 𝑓 (𝑉 ,Θ), parameter bud-
get 𝜅, and loss function L.

Ensure: Mixed-dimensional embedding table V∗ s.t. ∥V∗∥0 < 𝜅

∥V∥0
Pretraining:

Optimize V and Θ: V̂, Θ̂
𝑓
←− V, Θ by the base model 𝑓 .

Single-shot Pruning
Sample a mini-batch dataset D𝑏 ∼ D
Identify the saliency score 𝒔𝑖 𝑗 for the 𝑗-th dimension of the 𝑖-th
field ⊲ Equation (11)
Rank 𝒔𝑖 𝑗 in descending order
Prune embedding table V̄←− V̂ ⊲ Equation (12)
Retraining
Align the embedding dimension ⊲ Equation (13)
Retrain the slim model V∗,Θ∗ ←− V̄, Θ̄

4 EXPERIMENTS
In this section, we conduct extensive experiments aiming to answer
the following research questions (RQs):
• RQ1: How does the proposed SSEDS perform under the
different parameter budgets compared to other state-of-the-
art methods?
• RQ2: Can the proposed SSEDS improve both the search effi-
ciency of embedding dimensions and the inference efficiency
of the model?
• RQ3: How does the proposed SSEDS perform on the practi-
cal recommender system in the industry?
• RQ4: How do the different components (e.g., retraining
and Winning Ticket) affect the performance of the proposed
SSEDS?
• RQ5: Is it necessary to prune most of the embeddings?

4.1 Experimental Setups

Table 1: The statistical information of datasets.

Dataset #Instances #Fields #Features

Criteo 46M 39 1M
Avazu 40M 22 0.6M

4.1.1 Datasets. The offline experiments are conducted on two
widely used public datasets (i.e., Criteo and Avazu). Both of them
are randomly split into training/validation/test sets as ratio 8:1:1,
and the detailed information of datasets is summarized in Table 1.

• Criteo3: It is a real-world industry dataset for CTR predic-
tion, which consists of 45 million users’ click records on ads
over one month. Each click record contains 13 numerical
feature fields and 26 categorical feature fields. Following
the winner of Criteo Competition4, we group those low-
frequency (less than 10) features as a single feature "others",
and the numerical feature is transformed by 𝑙𝑜𝑔2 (𝑥), 𝑖 𝑓 𝑥 >

2.
• Avazu5: It consists of 40 million users’ click records on ads
over 11 days, and each record contains 22 categorical features.
We use the pre-processing method as Criteo for the low-
frequency features (less than 10) in Avazu.

4.1.2 Baselines. We compare the proposed SSEDS with the fol-
lowing state-of-the-art methods including uniform-dimensional
methods such as FM [24], DeepFM [9] and Wide&deep [3], as well
as different kinds of EDS methods including the heuristic based
method (i.e., MDE [8]), the HPO based method (i.e., AutoDim), and
embedding pruning based methods (i.e., PEP [20] and Deeplight).
• Basemethods:We select representative CTRmodels includ-
ing FM [24], DeepFM [9] and Wide&deep [3] as base models.
These methods utilize uniform embedding dimension for all
feature fields.
• MDE [8]: MDE (short for Mixed Dimension Embedding) is
the method that heuristically sets embedding dimensions
based on features’ popularity by human-designed rules.
• AutoDim [33] AutoDim utilizes a soft and continuous man-
ner to calculate the weights over various dimensions for
feature fields. Then the embedding architecture is derived
from the maximum weight.
• PEP [20]: PEP is an embedding pruning based method for
embedding dimensions search, which utilizes learnable thresh-
olds to automatically prune redundant feature parameters
so that sparse embeddings can be obtained adaptively.
• Deeplight [5]Deeplight proposes to prune both parameters
in the embedding and DNN layers to solve the high-latency
issues in CTR prediction.

4.1.3 Hyperparameters: The hyperparameters of the proposed SSEDS
are set as follows. The initial embedding dimensions (i.e., in the
pretraining stage) are 128 for all feature fields, and the parameter
budget 𝜅 is 0.1 in the pruning stage. For deep layers, they contain 2
fully connected hidden layers with 1024 units in each layer, and the
activation function for the layer’s outputs is 𝑅𝑒𝐿𝑈 (·). We utilize
Adam optimizer [13] with an initial learning rate 0.001 throughout
the experiments, and the batch size is set to 2048 for all datasets.
The baselines (i.e., MDE, PEP, and Deeplight) are implemented by
the codes provided by the authors. For a fair comparison, we set
the initial (maximum) embedding dimension as 128 for all baseline
models. All the offline experiments are run on a single machine
with 2 Tesla P100 GPU with 32G memory.

4.1.4 Evaluation metrics: The CTR prediction task can be viewed
as the binary classification (i.e., click and not click) task. Thus, we
utilize the common metric [38], i.e., AUC (Area Under the ROC
3https://www.kaggle.com/c/criteo-display-ad-challenge
4https://www.csie.ntu.edu.tw/20r01922136/kaggle-2014-criteo.pdf
5https://www.kaggle.com/c/avazu-ctr-prediction

0 40 80 120 160
#Parameter (M)

0.7995

0.8010

0.8025

0.8040

0.8055

AU
C

FM
Base
MDE

AutoDim
PEP

Deeplight
SSEDS

0 40 80 120 160
#Parameter (M)

0.8005

0.8020

0.8035

0.8050

0.8065

AU
C

DeepFM
Base
MDE

AutoDim
PEP

Deeplight
SSEDS

0 40 80 120 160
#Parameter (M)

0.7995

0.8010

0.8025

0.8040

0.8055

AU
C

Wide & Deep
Base
MDE

AutoDim
PEP

Deeplight
SSEDS

Figure 2: The AUC-#Parameter performance on the Criteo. (M=Million)

0 20 40 60 80
#Parameter (M)

0.7775

0.7805

0.7835

0.7865

0.7895

AU
C

FM
Base
MDE

AutoDim
PEP

Deeplight
SSEDS

0 20 40 60 80
#Parameter (M)

0.7775

0.7800

0.7825

0.7850

0.7875

AU
C

DeepFM
Base
MDE

AutoDim
PEP

Deeplight
SSEDS

0 20 40 60 80
#Parameter (M)

0.775

0.777

0.779

0.781

0.783

AU
C

Wide & Deep
Base
MDE

AutoDim
PEP

Deeplight
SSEDS

Figure 3: The AUC-#Parameter performance on the Avazu. (M=Million)

Curve) to evaluate the recommendation performance of all methods.
On the other hand, we also count the number of model parameters,
denoted as #𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 , to measure model space complexities.

4.2 CTR Prediction (RQ1)
To validate the effectiveness of the proposed SSEDS, we compare it
with other baselines on CTR prediction tasks. Specifically, the auto-
mated embedding dimension search methods (i.e., MDE, AutoDim,
PEP, Deeplight, and proposed SSEDS) are regarded as plugins inte-
grated into three base models (i.e., FM, DeepFM, and Wide&Deep)
respectively. Furthermore, in order to validate the model perfor-
mance under different parameter budgets 𝜅, we vary 𝜅 from 0.1 to
0.9 with step size 0.1 and 0.2 for the proposed SSEDS and the Deep-
light6 respectively. For the PEP, we report its performance under
three different sparsity levels. We only report the final optimized
results for MDE and AutoDim due to their model characteristics.
For base models, we set dimensions as {32, 64, 128}, and report their
performance. The experimental results are shown in Figure 2 and
Figure 3 for Criteo and Avazu, respectively, from which we can
observe that:

6For a fair comparison, we only use Deeplight to prune embedding tables, while the
parameters in the DNN component and the field matrix are not pruned.

• As the dimension increases, all base models can significantly
achieve better performance on both datasets. It indicates
that uniformly increasing dimensions for all feature fields
could enhance the expression of the embeddings, resulting
in better recommendation performance.
• The EDS basedmethods (i.e., MDE, AutoDim, PEP, Deeplight,
and SSEDS) perform better than uniform embedding dimen-
sion based methods (i.e., FM, DeepFM, and Wide&Deep),
which identifies that assigning the same embedding dimen-
sion for all feature fields is sub-optimal.
• The embedding pruning based EDS methods (i.e., PEP, Deep-
light, and SSEDS) can achieve better performance than the
heuristic basedmethod (i.e., MDE) and theHPO basedmethod
(i.e., AutoDim) in most cases on both datasets. The possible
reason is that embedding pruning based methods measure
the importance of different dimensions at a finer-grained
level (i.e., the embedding level), rather than at an upper level
(i.e., the dimension level) as in heuristic and HPO methods.
• SSEDS is capable of significantly improving the performance
of all base models by integrating searched mix-dimensional
embeddings into them. For example, it improves the perfor-
mance of DeepFM by 1.7‰ and 4.3‰with respect to AUC
scores, while reducing 90% embedding parameters on the
Criteo and Avazu, respectively. It is worth noting that merely

1‰ improvement is meaningful because of the large user
base of businesses [3, 9].
• Under the various parameter budgets, the proposed SSEDS
outperforms other EDS based methods on both datasets. We
attribute such advances to the proposed saliency criterion
that could explicitly identify the importance of each embed-
ding dimension. Thus, the overall performance demonstrates
the effectiveness and superiority of the proposed SSEDS.

4.3 Efficiency Analysis (RQ2)
It is inevitable to cost additional time to search for suitable em-
bedding dimensions for different features. Thus, we study the time
costs of the training stage (i.e., including pretraining, embedding
dimension search, and retraining stages) on the training set, as well
as the inference stage on the whole test set. Specifically, we set the
training epochs as 3 for all methods for a fair comparison. Experi-
mental results are shown in Figure 4 and Figure 5 respectively, and
we can find out that:
• The proposed SSEDS spends the least additional time for the
training stage, which is reasonable since SSEDS only need
to prune the embeddings once after the pre-training, rather
than to require iterative optimization procedures in other
EDS methods.
• The EDS based methods could significantly reduce the infer-
ence time compared to base models due to reducing a large
number of redundant embeddings. Furthermore, the infer-
ence time of SSEDS is comparable with other EDS methods
due to the similar number of parameters. Thus, the overall
performance of SSEDS in terms of efficiency, especially the
training efficiency, is superior to other methods.

FM DeepFM Wide & Deep
0

5000

10000

15000

22000

Ti
m

e
(s

)

(a) Training Time
Base
MDE

AutoDim
PEP

Deeplight
SSEDS

FM DeepFM Wide & Deep
0

20

40

60

80

100

Ti
m

e
(s

)

(b) Inference Time (Test Set)
Base
MDE

AutoDim
PEP

Deeplight
SSEDS

Figure 4: The efficiency analysis of proposed SSEDS on
Criteo.

4.4 Online A/B Test Experiment (RQ3)
To validate whether SSEDS could improve the performance while
reducing the number of parameters on the practical recommender
system in the industry, we deploy the SSEDS with a parameter
budget 0.1 on the WeChat Subscription recommendation platform
that covers hundreds of millions of users and generates hundreds
of billions of click records every day. This online recommendation
service aims to recommend a set of videos that users are most
likely to click. We conduct a 7-day online A/B test experiment on
this platform. Specifically, the base model is DeepFM [9] that has
already been deployed on theWeChat Subscription platform, where

FM DeepFM Wide & Deep
0

4000

8000

12000

16500

Ti
m

e
(s

)

(a) Training Time
Base
MDE

AutoDim
PEP

Deeplight
SSEDS

FM DeepFM Wide & Deep
0

20

40

65

Ti
m

e
(s

)

(b) Inference Time (Test Set)
Base
MDE

AutoDim
PEP

Deeplight
SSEDS

Figure 5: The efficiency analysis of proposed SSEDS on
Avazu.

about 3% of all users are set for the experimental group (SSEDS) and
reference group (DeepFM), respectively. Both DeepFM and SSEDS
are in an incrementally training manner every hour. We report the
CTR (%) values and corresponding the number of parameters of
the two models for each day in Figure 6. From the results, we can
observe that:
• SSEDS could significantly improve about 4% of online CTR
metric while reducing nearly 90% parameters, which con-
firms the practicality of SSEDS for the recommender system
in the industry.
• With the continually incremental training, there is a grow-
ing trend of improvement, which demonstrates that the pro-
posed method could well capture the dynamic changes of
the data distribution. It is meaningful because the data dis-
tribution constantly changes in a real industrial scenario.

Day1 Day2 Day3 Day4 Day5 Day6 Day7
3.0

3.5

4.0

4.5

5.0

5.5

CT
R

(%
)

DeepFM (CTR)
SSEDS (CTR)

0.0

3.5

7.0

10.5

14.0

17.5

#P
ar

am
et

er
 (B

)

DeepFM (#Parameter)
SSEDS (#Parameter)

Figure 6: The results of a 7-day online A/B test on WeChat
Subscription platform. (B=Billion)

4.5 Ablation Study (RQ4)
This subsection aims to explore the effects of retraining and the
Winning Ticket. The experiments are conducted on the Criteo and
Avazu datasets for the CTR prediction task, and take DeepFM as the
base model. In particular, we first explore the effect of retraining,
denoted as SSEDS w/o retraining, which implements the SSEDS
without retraining. That is, we only use the embeddings from the
pretrained model, and then prune the abundant dimensions via
single-shot pruning. The randomly initialized transform matrices

are utilized to align the dimension for different fields. We then ex-
plore the effect of theWinning Ticket. Recall that we use the pruned
embeddings (i.e., the Winning Ticket) as the initial embeddings for
the retraining stage. Thus, we explore its effect by random initial-
ization in the retraining stage, denoted as SSEDS w/o ticket. Other
settings are the same as the above experiments. The experimental
results are shown in Table 2, we can observe that:
• SSEDS without retraining (i.e., SSEDS w/o retraining) de-
grades the model performance of SSEDS, but is still better
than the base model on both two datasets. The possible rea-
son is that over-parameterized embeddings might introduce
noise or result in overfitting, which in turn demonstrates the
necessity of embedding pruning.
• SSEDS retraining with random initialization (i.e., SSEDS w/o
ticket) also degrades the model performance of SSEDS, but
still achieves better performance than the base model and
SSEDS w/o retraining. It implies that the Winning Ticket
could improve the recommendation performance of themodel.

Table 2: The ablation study results with respect to the re-
training and theWinning Ticket.

Methods Criteo Avazu

Base (DeepFM) 0.8017 0.78
SSEDS w/o retraining 0.8020 0.7812
SSEDS w/o ticket 0.8027 0.7826

SSEDS 0.8031 0.7834

4.6 Pruning Results Analysis (RQ5)
To further demonstrate the necessity of embedding pruning, we
present the distribution of saliency scores as well as the searched
dimensions under the parameter budget 𝜅 = 0.1. The experimental
results are shown in Figure 7 and Figure 8 for Criteo and Avazu
datasets, respectively. We can observe that:
• For both datasets, the saliency scores obey the power-law
distribution, i.e., only a tiny proportion of dimensions have a
large effect on the loss function. Such results are consistent
with the characteristic of features in the recommender sys-
tem, i.e., features following the long-tail distribution [12, 23].
Thus, it is reasonable and necessary to prune most of the
embedding parameters.
• Only a small portion of feature fields are assigned with rela-
tively large dimensions, while most of the fields are assigned
small dimensions, or even 0 dimensions (meaning that the
corresponding field is removed). It demonstrates that our
method could also be utilized as an effective technique for
automatic feature selection.

5 CONCLUSION
In this paper, we have modeled the EDS problem in the recom-
mender system as the embedding pruning problem, where the
suitable embedding dimensions for different feature fields could

1e-4 2e-4 3e-4 4e-4
Salinecy Scores

0

250

500

750

1000

1250

1500

1750

Co
un

t

(a) Saliency Scores Distribution

0 5 10 15 20 25 30 35 40
Feature Field

0

5

10

15

20

25

30

35

Di
m

en
sio

n

(b) Searched Dimensions Distribution

Figure 7: The distribution of saliency scores and searched
dimensions for the Criteo dataset.

1e-4 2e-4 3e-4 4e-4
Salinecy Scores

0

200

400

600

800

1000

1200

1400

Co
un

t

(a) Saliency Scores Distribution

0 5 10 15 20 25
Feature Field

0

5

10

15

20

25

Di
m

en
sio

n

(b) Searched Dimensions Distribution

Figure 8: The distribution of saliency scores and searched
dimensions for the Avazu dataset.

be automatically obtained by removing those relatively unimpor-
tant dimensions under the desired parameter budget. To achieve
this goal, we proposed a single-shot embedding dimension search
method, termed SSEDS, which introduces a saliency criterion for
identifying the importance of embedding dimensions in an efficient
way. Extensive offline experiments have been conducted to vali-
date the effectiveness and efficiency of the proposed SSEDS on two
widely used datasets. The experimental results have shown that the
proposed SSEDS can achieve better recommendation performance
than both the traditional uniform dimension based methods and
recent EDS based methods while reducing a large number of em-
bedding parameters (about 90%). On the other hand, the efficiency
of embedding dimensions search for SSEDS is superior to other
methods. Furthermore, the proposed SSEDS has also been deployed
on the WeChat Subscription platform for online recommendation
services. The 7-day A/B test results have demonstrated that SSEDS
could significantly improve the performance of the online recom-
mendation model while reducing resource consumption.

In the future, we plan to employ the proposed SSEDS to differ-
ent recommendation tasks and explore how to leverage the prior
knowledge of features to improve the model performance further.
Furthermore, we will also explore to search embedding dimensions
in a fine-grained manner, i.e., searching embedding dimensions for
each unique feature, and dynamic situations [22]. Finally, we will
attempt to study the theoretical part of embedding pruning in order
to guide the dimension assignment.

6 ACKNOWLEDGEMENT
This work is partially supported by the Shenzhen Fundamental
Research Program under the Grant No. JCYJ20200109141235597,
National Science Foundation of China under grant No. 61761136008,
Shenzhen Peacock Plan under Grant No. KQTD2016112514355531,
Guangdong Introducing Innovative and Entrepreneurial Teams
under grant No. 2017ZT07X386, Australian Research Council Future
Fellowship (FT210100624) and Discovery Project (DP190101985).
The authors would like to thank Chong Liu for providing valuable
suggestions on earlier version of this paper.

REFERENCES
[1] Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, and

Katarzyna Musial. 2020. Multi-level graph convolutional networks for cross-
platform anchor link prediction. In Proceedings of the 26th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining. 1503–1511.

[2] Tong Chen, Hongzhi Yin, Yujia Zheng, Zi Huang, Yang Wang, and Meng Wang.
2021. Learning elastic embeddings for customizing on-device recommenders. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 138–147.

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep; Deep Learning for Recommender Systems. In Proceedings of
the 1st Workshop on Deep Learning for Recommender Systems (Boston, MA, USA)
(DLRS 2016). Association for Computing Machinery, New York, NY, USA, 7–10.
https://doi.org/10.1145/2988450.2988454

[4] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (Boston, Massachusetts, USA) (RecSys ’16). Association for
Computing Machinery, New York, NY, USA, 191–198. https://doi.org/10.1145/
2959100.2959190

[5] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang Lin.
2021. DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR
Predictions in Ad Serving. In Proceedings of the 14th ACM international conference
on Web search and data mining. 922–930.

[6] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture
search: A survey. The Journal of Machine Learning Research 20, 1 (2019), 1997–
2017.

[7] Jonathan Frankle andMichael Carbin. 2018. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018).

[8] AA Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou.
2019. Mixed dimension embeddings with application to memory-efficient recom-
mendation systems. In 2021 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2786–2791.

[9] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine Based Neural Network for CTR Prediction.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(Melbourne, Australia) (IJCAI’17). AAAI Press, 1725–1731.

[10] Manas R Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K Adams,
Pranav Khaitan, Jiahui Liu, and Quoc V Le. 2020. Neural input search for large
scale recommendation models. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2387–2397.

[11] Manas R. Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K. Adams,
Pranav Khaitan, Jiahui Liu, and Quoc V. Le. 2020. Neural Input Search for Large
Scale Recommendation Models (KDD ’20). Association for Computing Machinery,
New York, NY, USA, 2387–2397. https://doi.org/10.1145/3394486.3403288

[12] Wang-Cheng Kang, Derek Zhiyuan Cheng, Ting Chen, Xinyang Yi, Dong Lin,
Lichan Hong, and Ed H. Chi. 2020. Learning Multi-Granular Quantized Em-
beddings for Large-Vocab Categorical Features in Recommender Systems. In
Companion Proceedings of the Web Conference 2020 (Taipei, Taiwan) (WWW
’20). Association for Computing Machinery, New York, NY, USA, 562–566.
https://doi.org/10.1145/3366424.3383416

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[14] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions
via influence functions. In International Conference on Machine Learning. PMLR,
1885–1894.

[15] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. 2018. Snip:
Single-shot network pruning based on connection sensitivity. arXiv preprint
arXiv:1810.02340 (2018).

[16] Zeyu Li,Wei Cheng, Yang Chen, Haifeng Chen, andWeiWang. 2020. Interpretable
Click-Through Rate Prediction through Hierarchical Attention. In Proceedings of

the 13th International Conference on Web Search and Data Mining (Houston, TX,
USA) (WSDM ’20). Association for Computing Machinery, New York, NY, USA,
313–321. https://doi.org/10.1145/3336191.3371785

[17] Jianxun Lian, Xiaohua Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guang zhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature
Interactions for Recommender Systems. Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (2018).

[18] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[19] Haochen Liu, Xiangyu Zhao, Chong Wang, Xiaobing Liu, and Jiliang Tang. 2020.
Automated embedding size search in deep recommender systems. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2307–2316.

[20] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. 2021. Learnable
Embedding Sizes for Recommender Systems. arXiv preprint arXiv:2101.07577
(2021).

[21] Quoc Viet Hung Nguyen, Chi Thang Duong, Thanh Tam Nguyen, Matthias Wei-
dlich, Karl Aberer, Hongzhi Yin, and Xiaofang Zhou. 2017. Argument discovery
via crowdsourcing. The VLDB Journal 26, 4 (2017), 511–535.

[22] Liang Qu, Huaisheng Zhu, Qiqi Duan, and Yuhui Shi. 2020. Continuous-time
link prediction via temporal dependent graph neural network. In Proceedings of
The Web Conference 2020. 3026–3032.

[23] Liang Qu, Huaisheng Zhu, Ruiqi Zheng, Yuhui Shi, and Hongzhi Yin. 2021. Im-
gagn: Imbalanced network embedding via generative adversarial graph networks.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. 1390–1398.

[24] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference
on data mining. IEEE, 995–1000.

[25] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. AutoInt: Automatic Feature Interaction Learning via
Self-Attentive Neural Networks. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (Beijing, China) (CIKM
’19). Association for Computing Machinery, New York, NY, USA, 1161–1170.
https://doi.org/10.1145/3357384.3357925

[26] Yang Sun, Junwei Pan, Alex Zhang, and Aaron Flores. 2021. FM2: Field-matrixed
Factorization Machines for Recommender Systems. In Proceedings of the Web
Conference 2021. 2828–2837.

[27] Qinyong Wang, Hongzhi Yin, Tong Chen, Zi Huang, Hao Wang, Yanchang Zhao,
and Nguyen Quoc Viet Hung. 2020. Next point-of-interest recommendation on
resource-constrained mobile devices. In Proceedings of the Web conference 2020.
906–916.

[28] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
2017. Attentional Factorization Machines: Learning the Weight of Feature In-
teractions via Attention Networks. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (Melbourne, Australia) (IJCAI’17). AAAI Press,
3119–3125.

[29] Bencheng Yan, Pengjie Wang, Kai Zhang, Wei Lin, Kuang-Chih Lee, Jian Xu, and
Bo Zheng. 2021. Learning Effective and Efficient Embedding via an Adaptively-
Masked Twins-based Layer. arXiv preprint arXiv:2108.11513 (2021).

[30] Hongzhi Yin and Bin Cui. 2016. Spatio-temporal recommendation in social media.
Springer.

[31] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning Based
Recommender System: A Survey and New Perspectives. ACM Comput. Surv. 52,
1, Article 5 (Feb. 2019), 38 pages. https://doi.org/10.1145/3285029

[32] Yan Zhang, Hongzhi Yin, Zi Huang, Xingzhong Du, Guowu Yang, and Defu
Lian. 2018. Discrete deep learning for fast content-aware recommendation. In
Proceedings of the eleventh ACM international conference on web search and data
mining. 717–726.

[33] Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida
Wang, Huiji Gao, and Bo Long. 2020. Memory-efficient embedding for recom-
mendations. arXiv preprint arXiv:2006.14827 (2020).

[34] Xiangyu Zhao, Chong Wang, Ming Chen, Xudong Zheng, Xiaobing Liu, and
Jiliang Tang. 2020. AutoEmb: Automated Embedding Dimensionality Search in
Streaming Recommendations. CoRR abs/2002.11252 (2020). arXiv:2002.11252
https://arxiv.org/abs/2002.11252

[35] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: A deep reinforcement learning framework
for news recommendation. In Proceedings of the 2018 World Wide Web Conference.
167–176.

[36] Ruiqi Zheng, Liang Qu, Bin Cui, Yuhui Shi, and Hongzhi Yin. 2022. AutoML for
Deep Recommender Systems: A Survey. arXiv preprint arXiv:2203.13922 (2022).

[37] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu,
and Kun Gai. 2019. Deep Interest Evolution Network for Click-Through Rate
Prediction. Proceedings of the AAAI Conference on Artificial Intelligence 33, 01
(Jul. 2019), 5941–5948. https://doi.org/10.1609/aaai.v33i01.33015941

[38] Jieming Zhu, Kelong Mao, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu,
Zhicheng Dou, Xi Xiao, and Xiuqiang He. 2021. Towards Open Benchmarking
for Recommender Systems. (2021).

https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/3394486.3403288
https://doi.org/10.1145/3366424.3383416
https://doi.org/10.1145/3336191.3371785
https://doi.org/10.1145/3357384.3357925
https://doi.org/10.1145/3285029
https://arxiv.org/abs/2002.11252
https://arxiv.org/abs/2002.11252
https://doi.org/10.1609/aaai.v33i01.33015941

[39] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Feature-based Recommender System
	2.2 Embedding Dimension Search Methods
	2.3 Network Pruning

	3 Proposed Method
	3.1 Problem Formulation
	3.2 SSEDS

	4 Experiments
	4.1 Experimental Setups
	4.2 CTR Prediction (RQ1)
	4.3 Efficiency Analysis (RQ2)
	4.4 Online A/B Test Experiment (RQ3)
	4.5 Ablation Study (RQ4)
	4.6 Pruning Results Analysis (RQ5)

	5 Conclusion
	6 Acknowledgement
	References

