
Developer Behaviors in Validating and Repairing
LLM-Generated Code Using IDE and Eye Tracking
Ningzhi Tang*†, Meng Chen*†, Zheng Ning†, Aakash Bansal†, Yu Huang‡, Collin McMillan†, Toby Jia-Jun Li†

†{ntang, mchen24, zning, abansal1, cmc, toby.j.li}@nd.edu, ‡yu.huang@vanderbilt.edu
†University of Notre Dame, Notre Dame, IN, USA ‡Vanderbilt University, Nashville, TN, USA

Abstract—The increasing use of large language model (LLM)-
powered code generation tools, such as GitHub Copilot, is trans-
forming software engineering practices. This paper investigates
how developers validate and repair code generated by Copilot
and examines the impact of code provenance awareness during
these processes. We conducted a lab study with 28 participants
tasked with validating and repairing Copilot-generated code
in three software projects. Participants were randomly divided
into two groups: one informed about the provenance of LLM-
generated code and the other not. We collected data on IDE
interactions, eye-tracking, cognitive workload assessments, and
conducted semi-structured interviews. Our results indicate that,
without explicit information, developers often fail to identify the
LLM origin of the code. Developers exhibit LLM-specific be-
haviors such as frequent switching between code and comments,
different attentional focus, and a tendency to delete and rewrite
code. Being aware of the code’s provenance led to improved
performance, increased search efforts, more frequent Copilot
usage, and higher cognitive workload. These findings enhance
our understanding of developer interactions with LLM-generated
code and inform the design of tools for effective human-LLM
collaboration in software development.

Index Terms—GitHub Copilot, developer behavior analysis,
debugging strategy, eye tracking, IDE tracking

I. INTRODUCTION

Recent advances in LLMs have shown the potential to
increase developers’ productivity [1], [2]. A notable example
is GitHub Copilot [3], a code generation tool powered by
OpenAI’s GPT model [4], which can generate lines or sub-
routines of code based on existing code or natural language
comments [5]. However, the quality of the generated code is
not guaranteed [6]. Developers must spend significant time
evaluating its correctness, fixing potential bugs, and integrating
the code into the existing codebase [7].

Error discovery and repair strategies are crucial for suc-
cessful human-AI interaction, guiding the development of
underlying AI models and user interfaces [8]–[10]. For code
generation, AI tools can generate different types of errors
than humans [11], and unlike humans, AI cannot articulate
the rationale behind its decisions. Therefore, the focus of
attention and strategies that developers follow may differ
from those used when working with human-written code.
Although studies have explored how developers interact with
such AI tools to generate code [1], [12], [13], and the quality
and usability of the generated code [5], [14], the process of
validating and repairing them is still not well understood.

*Both authors contributed equally to this research.

Furthermore, as LLM-generated code becomes increasingly
integrated with existing codebases, it is important to consider
its provenance (i.e., whether the code is LLM-generated or
human-written). Previous research has revealed that aware-
ness of code provenance impacts developers’ behavior when
interacting with code, even though they may not always
be conscious of such biases [15]–[18]. In the context of
debugging, developers’ awareness of code provenance may
also impact their mental models of what is more likely to go
wrong and how they may go wrong, affecting their strategies
and performance. Understanding these differences can help
developers better comprehend LLM-powered code generation
tools, leading to the design of tools that establish appropriate
trust and support better collaboration.

Prior studies on developers’ interactions with LLM-powered
code generation tools have largely relied on subjective anal-
yses, such as post-analysis of audio/video recordings [7],
surveys [1], and interviews [12], [13]. These methods may
suffer from recall and observer biases [19], [20], and fall short
of reliably capturing developers’ cognitive processes [21].
In response, recent research in software engineering has
increasingly utilized eye tracking as an objective measure.
Eye-tracking data can be used to infer their visual atten-
tion strategies [22], [23] and may correlate with their self-
reported cognitive workload [24], [25]. This provides an
important indicator of programmers’ mental model [26], [27].
Previous research also suggests that developer interactions
within the Integrated Development Environment (IDE) can
complement eye-tracking data to comprehensively understand
behaviors [28], [29]. Therefore, we employ a mixed-method
approach, combining quantitative (i.e., eye tracking and IDE
tracking) and qualitative (i.e., surveys and interviews) methods
to understand developer behaviors in our study.

This paper addresses the gap in understanding how devel-
opers validate and repair LLM-generated code, specifically
focusing on chunks of code (about tens of lines) produced by
Copilot. We also examine the effects of informing developers
about the code provenance on their validation and repair
strategies. We conducted lab studies with 28 participants, task-
ing them with validating, repairing, and integrating Copilot-
generated code into three representative software projects. This
study investigated the following research questions.

• RQ1. What are developers’ perceptions and strategies for
validating and repairing LLM-generated code compared
to human-written code?

40

2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

1943-6106/24/$31.00 ©2024 IEEE
DOI 10.1109/VL/HCC60511.2024.00015

• RQ2. How does awareness of code provenance affect the
validation and repair behaviors of developers?

We highlight the following findings of our study.
• Developers often do not recognize the provenance of code

unless explicitly informed. LLM-generated code typically
has more comments, different error types, and stronger
detail but weaker logic performance. Developers display
LLM-specific behaviors including frequent switching be-
tween code and comments, varied focus areas, and a
tendency to delete and rewrite the code.

• Informing developers about the provenance of LLM-
generated code positively influences their performance in
validation and repair tasks. It leads to improved validation
and repair outcomes, increased search efforts, and more
frequent utilization of Copilot during these processes, but
it also increases their cognitive workload.

II. RELATED WORK

A. Empirical Studies of LLM Code Generation Tools

Recent advances in transformer-based [30] LLMs marked
a significant breakthrough in code generation. Several
production-level code generation tools, such as GitHub Copi-
lot, OpenAI GPT-4 [31], and Tabnine [32], have been adopted
by a growing number of developers [1]. Previous studies
explored how developers perceive and interact with these
tools [12], [33]–[35]. For example, Barke et al. [13] ob-
served two modes of developer interactions: acceleration,
where developers use Copilot to code faster, and exploration,
where developers use it to explore what to do next. Liang et
al. [1] conducted a large-scale survey with 410 developers and
identified a set of usage characteristics and usability issues
with AI programming assistants. Our study focuses on how
developers validate and repair Copilot-generated code, serving
as a complementary perspective to the existing literature.

B. Debugging Strategies for Software Developers

Debugging is a complex process involving various tasks
like code comprehension, error localization, and repair, and
remains a long-standing topic in software engineering re-
search [36]–[38]. Previous literature indicates that debugging
involves iteratively comprehending the code and forming
and testing hypotheses [39], [40]. Liu et al. [41] observed
that common debugging techniques for large-scale software
systems generally fall into two modes: identify and fix the
error. However, LLM-generated code shows different traits
from the human-written code. Previous studies found it to be
less compact [42], lacking context [43], and of lower quality
than human-written code [44]. Unlike previous studies, we
investigate how developers validate and repair LLM-generated
code. This helps us understand LLM’s impact on software
development and develop better tools for new challenges.

C. Eye Tracking in Software Engineering

Eye tracking captures participants’ subconscious visual at-
tention by recording their eye gaze data, reducing the subjec-
tivity of self-report measures, e.g., think-aloud [45]. Recently,

researchers started using it to study the software development
process, including code comprehension [27], review [18], and
debugging [28]. Eye tracking can also typically be integrated
with tracking developers’ interactions within the IDE to under-
stand how they develop software [28], [46], [47]. In this study,
we use CodeGRITS [48] to simultaneously track developers’
IDE interactions and eye gazes for analysis.

Previous studies also used developer behavioral data (e.g.,
medical imaging and eye tracking data) to explore differences
in software development behavior under different code prove-
nance awareness, such as gender [15], [17] or human/machine
distinctions [17], [18]. Our research extends these studies by
using IDE and eye tracking to explore the impact of code
provenance on validating and repairing LLM-generated code.

III. STUDY DESIGN

A. Programming Tasks

In our study, each participant completed three Java pro-
gramming tasks in different software engineering scenarios:
algorithm design, graphical user interface (GUI) design, and
object-oriented programming (OOP). For each task, we created
a project containing several declared but unimplemented sub-
routines (e.g., classes/methods). Tasks 1 and 3 were adapted
from undergraduate computer science assignments [49], [50].

We then developed prompts describing each subroutine’s
intended functionality and used Copilot to generate code. We
used Copilot as a representative LLM-based code generation
tool because it is specifically designed for coding, widely
used [1], and previously studied in other works [7], [12].

• Task 1. Kakamora (algorithm design): A LeetCode-like
task that utilizes dynamic programming to find a path in a
square array with the minimum sum. The entire program
was written from scratch by Copilot.

• Task 2. Calculator (GUI): A calculator app with a text
interface and operational buttons, written using the Java
GUI API. The code for GUI layout and button listeners
was generated by Copilot.

• Task 3. ZooSystem (OOP): A zoo management system
with various animal classes with inheritance relation-
ships (e.g., Animal-Mammal-Lion). Several manage-
ment functions, such as add, delete, search, and display
animals, were generated by Copilot.

We deliberately constructed prompts for which Copilot
would generate code containing representative errors of dif-
ferent types. We categorized these errors using the taxonomy
presented by Beizer [51]. The error statistics for the three tasks
are presented in Table I in the Appendix. Each subtask refers
to a subroutine generated by Copilot that contains bugs, which
may include multiple error types (e.g., subtasks 1.2 and 3.2).

B. Participants

We recruited 28 participants (17 male, 11 female) from the
local university community. Among them, 10 are graduate
students and 14 are undergraduate students; 22 major in
computer science and engineering. Three participants had
no prior programming experience in Java, but they had six,

41

seven, and 12 years of experience in other programming
languages, respectively. 12 had just completed an introductory
course on Java programming, 12 had one to three years of
Java programming experience, and one had over three years.
Regarding their general programming experience, participants
on average had 5.5 years, and only three of them had less
than three years of experience. Eight of them had used Copilot
in the past before our study. The participants received a $30
Amazon Gift Card as compensation for their time.

C. Study Protocol

We conducted the study in person in a usability lab using
a Windows 10 computer with a 27-inch monitor and a Tobii
Pro Fusion eye tracker [52], which sampled at 60 Hz. Par-
ticipants used IntelliJ IDEA 2022.1.4 with the Copilot and
CodeGRITS [48] plugins for IDE tracking, eye tracking, and
screen recording. The IDE font size was set to 20 points. To
mitigate the influence of light intensity on eye tracking, all
study sessions were held in the same room with all doors and
windows closed and the same ceiling light on.

We randomly assigned the participants into two groups, each
consisting of 14 participants, with different information about
the code provenance. The Informed group was explicitly
told that the code was generated by Copilot, while the Non-
Informed group received no such indication.

Each study session lasted approximately two hours. After
the participants signed the consent form and completed a pre-
study demographic questionnaire, we briefed them about the
overall objective and process of the study, followed by a 10-
minute tutorial on using IntelliJ IDEA and Copilot. We also
gave instructions on interacting with the eye tracker (e.g.,
refraining from major head movements).

For each task, participants first read an instructional docu-
ment about the task background and then calibrated the eye
tracker. They had 20 minutes to complete each task without
browsing the Internet. After each task, participants completed
a NASA Task Load Index (NASA-TLX) questionnaire [53]
to self-report their perceived workload across six dimensions:
Mental Demand, Physical Demand, Temporal Demand, Per-
formance, Effort, and Frustration.

At the end of the study, we conducted a 20-minute semi-
structured interview with participants. We discussed their per-
ceptions of LLM-generated code quality, perceived differences
between LLM-generated and human-written code, strategies
for validating and repairing LLM-generated code, use of IDE
features and Copilot, and changes in mental models and
strategies. We also asked the Non-Informed group if they
realized the code was LLM-generated during the study.

D. Threats to Validity

Our study faces several validity threats, one of which
involves the programming task selection. We chose three light-
weight tasks in a popular programming language (i.e., Java),
designed to represent typical types of programming tasks, and
iteratively invoked Copilot to generate code with representative
error types. Despite this, these tasks may not fully capture the

complexity and diversity of real-world programming. Then,
participant selection poses another threat. Most participants
were Computer Science students, which may not represent
professional developers’ experiences. To enhance ecological
validity, a future longitudinal study in actual software devel-
opment settings would be beneficial. Furthermore, eye tracking
often shows drift after prolonged use [54]. To mitigate this, we
performed calibration before each task, used well-documented
eye-tracking metrics and analyses [55], and supplemented it
with self-reported workload via NASA-TLX [53].

IV. RESEARCH METHODS

A. Quantitative Analysis

1) Gaze Pattern Metrics: Fixation refers to stabilization of
the eye at one location for a period of time, which is commonly
used in eye-tracking studies and is often considered to be
associated with visual attention and cognitive workload [56],
[57]. Following the practice in previous research [55], we
identified fixations by extracting gazes on the same token
with durations longer than 200 ms, and we considered the
transitions between two fixations within 50 ms as saccades. We
computed the following metrics using the definitions provided
in [55] to analyze the cognitive processes of the participants.

• Fixation Time: Total duration of all fixations in seconds.
• Fixation Count: Total number of fixations.
• Average Fixation Duration: Average duration of each

fixation in seconds.
• Saccade Time: Total duration of all saccades in seconds.
• Saccade Count: Total number of saccades.
• Average Saccade Length: Average length of each saccade

in pixels.
2) Developer Behavior Categorization: For eye tracking

data, based on the fixations, we classified the tokens that
the developer looks at into three types: code, comment, and
document. This classification allowed us to identify three
types of reading behaviors (Behavior 1-3 Table II in the Ap-
pendix). For IDE interaction data, an author categorized them
according to the similarity of their underlying activity types
into initial high-level behaviors (e.g., Debug, StepOver,
and ToggleLineBreakpoint into “Employing Debug-
ger”) and discarded data that cannot be meaningfully aggre-
gated (e.g., ToggleInsertState). Subsequently, another
author reviewed and, if necessary, revised the categorizations
and definitions of behaviors. The disagreement cases were
discussed to reconcile differences and establish a cohesive
categorization (Behavior 4-11 in Table II in the Appendix).

B. Qualitative Analysis

For the qualitative analysis of interview transcripts, we fol-
lowed established open-coding procedures [58], [59]. Initially,
two authors independently performed qualitative coding on
the transcripts. Subsequently, they discussed their findings to
achieve agreement and formed a consolidated codebook. Using
this codebook, we conducted a thematic analysis to identify
emerging themes from the interviews. These themes were
refined and developed into study findings.

42

V. STUDY RESULT

In this section, we report the results for our RQs. Except
for Fig. 1, all calculations of frequency or time were averaged
across each task for all participants.

A. RQ1. Perceptions and Strategies of Developers

1) Perceptions of LLM-Generated Code: We asked the
fourteen participants from the Non-Informed group at the
beginning of the interview, “During the tasks, did you realize
that the code you just validated was actually generated by
LLM?” Almost 80% (11/14) of them reported they did not
realize it. This indicates that if not clearly informed, developers
may not consider the provenance of the code, or they may
implicitly assume that the code was written by a human.
However, different perceptions of the code provenance impact
validation and repair strategies, workload, and performance,
which is further discussed in Section V-B.

Many participants (11 out of 28) indicated that the code had
a good coding style and readability, even better than human-
written code. For example, P21 reported, “[LLM-generated
code] does follow human formatting guidelines; variable
names and everything were verbose and easy to use.” (P10)
P14, P15, P17, P21, P23, and P25 highlighted that LLM-
generated code shows better understandability as it contains
more detailed comments compared to human-written code.

However, participants reported that LLM made some mis-
takes that human developers would not make. For example,
in Task 1, Copilot used a series of if statements to hard-
code the test samples. P19, P21, P24, and P26 all expressed
confusion: “When I saw the hardcoded ‘1’, ‘2’, and ‘3’ in the
path reconstruction, I was really confused and thought there
would be some special meanings.” (P21).

P6, P16, P25, and P27 also mentioned that LLM-generated
code generally avoids detailed errors like syntax bugs, but
its semantics and behaviors often misalign with user intents.
“Humans are more error-prone than Copilot when it comes
to details; for the logic [of code], I think Copilot is more
error-prone”. (P25) This also affects their validation and repair
approaches, which is discussed more in Section V-A2.

2) Strategies to Validate and Repair Code: Combining the
findings of the interviews with tracked data, we identified
the following findings about developers’ validation and repair
strategies specific to LLM-generated code.

n = 4507

n = 2650

n = 3086

n = 1350

n = 1907

n = 683

n = 1451

n = 405

Reading Code Scrolling Reading Code Scrolling Reading Code

Reading Code Reading Comment Reading Code Reading Comment Reading Code

Pattern #1

Pattern #2

Fig. 1. Top-2 most frequent behavior transition patterns across all participants.

First, based on developer behavior categorization in Sec-
tion IV-A2, we selected the two most frequent patterns of

behavior transition sequences in Fig. 1. Pattern #2 shows
developers frequently switch fixations between code and com-
ments. Since the comments in the task projects are used as
prompts for Copilot to generate buggy code, we interpret this
as that developers are trying to “disambiguate the mismatch
between the code and the prompt.” (P14) P3 also reported,
“Switching between instructions and code is annoying and
challenging.”, consistent with other studies [60], [61].

Second, some LLM-generated code contains numerous er-
roneous statements that are difficult to fix by modifying only
small parts. Participants tend to delete or comment out almost
all of them and rewrite the code themselves. For example,
P17 stated, “With the layout, I just completely threw out the
existing layout and kind of made one that worked myself.”

Third, as stated in Section V-A1, participants think that
LLM is more likely to make errors in the overall logic, while
humans are more likely to make mistakes in the details. For
example, P25 states that “I will focus more on the logic of the
code if it is generated by LLM, probably because I don’t think
Copilot can generate really complicated logic”; LLM rarely
makes mistakes in generating similar, repetitive code blocks –
“If you use LLM to generate similar code, it tends to be either
all correct or all incorrect.” Therefore, “If it is a similar bunch
of code, I would trust the LLM; as for logic details, I will
double-check the correctness of the LLM-generated code.”

Fourth, we allowed participants to use Copilot in our study.
They reported that Copilot itself facilitated the process of idea
exploration, and provided syntax suggestions while acceler-
ating coding, consistent with previous research [1], [13]. On
average, participants used Copilot to generate more characters
than by typing keystrokes (362.84 > 131.31, Student’s t-test,
p-value = 0.0007 < 0.01). Notably, we also observed that
participants used Copilot to generate inline comments to help
understand the generated code. P25 states, “I think if that line
of code has a bug, generating the comments directly from the
code will help me figure it out.”

Key findings: If uninformed, developers may not recog-
nize the code is LLM-generated. LLM-generated code
performs well in terms of coding style and readabil-
ity. However, it tends to make mistakes uncommon for
human developers. Developers exhibit several behaviors
specific to handling LLM-generated code: they frequently
switch between code and comments, often completely
delete and rewrite code, and exhibit a shifted focus from
syntax to logic. Copilot is frequently used to enhance the
process, particularly by generating inline comments.

B. RQ2. Effects of Code Provenance Knowledge

In this section, we investigate the impact of code prove-
nance, i.e., whether the code was written by LLM or humans,
on developer behaviors.

1) Bug Fixing Success Rate: We first analyze bug-fixing
success rates in the study (see bugs details in Table I in the
Appendix). As shown in Fig. 2, we observed that the Informed
group performs better than the Non-Informed group (average

43

23
1x

32
26

.4

31
26

23
1x

61
25

61
4x

61
25

61
12

61
25

41
64

61
12

41
3x

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
R

at
e

Success Rates of Two Groups on Different Bugs

Informed
Non-Informed

Fig. 2. The success rates of bug validating and repair of the two groups.

success rate 0.577 > 0.446, Student’s t-test, p-value = 0.0417
< 0.05). When participants were informed that the code was
written by Copilot, they performed better on 8 bugs, the same
on 3 bugs, and worse on 1 bug.

**

206.7*254.3*

0.438†0.493†

1.705†2.303†

W2. Fixation Time (s)

W3. Average Fixation Duration (s)

W4. Saccade Time (s)

Statistical Significant (p < 0.05) Informed Non-Informed

††Marginal Significant (0.05 < p < 0.10) Informed Non-Informed

W1. Effort 5.595*6.394*

4.606† 2.784†

6.081†11.21†

7.758* 11.32*

B1. Tracing Code

B2. Invoking Copilot

B3. Utilizing Clipboard

*

†

*

†

Fig. 3. Comparison of developer behavior frequencies (B1-B3), as well
as self-reported workload measured by NASA-TLX and eye-tracking-related
metrics (W1-W4) between the two groups. Only (marginally) statistically
significant results from the Student’s t-test are reported.

2) Developer Behaviors: As stated in Section V-A2, partic-
ipants. Thus, we first computed the ratio of time spent on code
to comments to see if there were any differences between the
two groups. These metrics can be inferred from eye-tracking
data. The results suggest that the Informed group had a higher,
which is partially significant (0.233 > 0.179, Student’s t-test,
p-value = 0.093 < 0.10). The Pearson correlation analysis also
showed that the higher ratio was positively correlated with the
success rates across 12 bugs for each person (0.103 with a
p-value of 0.066 < 0.10). Additionally, the Informed group
showed significantly less time reading the original document
(48.6 < 67.4, Student’s t-test, p-value = 0.029 < 0.05).

As shown in Fig. 3, we calculated the frequency of de-
veloper behaviors, excluding reading, for both groups (see
details in Behaviors 4-11 of Table II in the Appendix). We
make two observations for the (partially) statistically signif-
icant results: First, if informed that the code was generated
by LLM, participants use tracing code features (e.g., Find,
GotoDeclaration, FindUsages) more frequently (B1).
Fig. 3 also shows that they have higher Saccade Time (W4),

which indicates greater search effort [62]. This may be because
they focus more on the high-level logic of the code than on
the low-level details, as stated in Section V-A2. Second, if
informed that the code is generated by LLM, participants use
Copilot more (B2) and the clipboard less (B3).

3) Cognitive Workload: We also calculated the workload
metrics based on NASA-TLX [53] and the gaze pattern metrics
from Section IV-A1. Fig. 3 reveals that the Informed group
had higher self-reported effort (W1), fixation time (W2),
and average fixation duration (W3). Longer fixations indicate
greater visual attention and cognitive workload [56], [57].
This suggests that being aware of LLM-generated code’s
provenance increases cognitive workload.

Key findings: When developers are informed that the
code is generated by LLM, they perform better in vali-
dating and repairing the code. Subsequently, they spend
more time examining the prompts provided to Copilot
compared to the code, and spend less time reading docu-
ments. When informed, developers make a greater search
effort by using tracing code features more frequently
and exhibit higher saccade times. They also used Copilot
more frequently and used the clipboard less frequently.
Finally, they experience a higher cognitive workload,
as indicated by self-reported effort, fixation time, and
average fixation duration.

VI. CONCLUSION AND FUTURE WORK

We conducted a lab study with 28 participants to observe
their behavior while validating and repairing LLM-generated
code. Our findings indicate that, without explicit notification,
developers often fail to recognize the code’s provenance,
which can impact their performance, behaviors, and cognitive
workload. Although the LLM-generated code exhibits good
readability and style, it introduces atypical errors. Developers
also demonstrate unique behaviors in this context.

These observations underscore the need for new tools and
methods tailored to support developers in the LLM era.
For example, increasing awareness of code provenance may
enhance their abilities, likely due to a more focused approach
to generation prompts and a better understanding of poten-
tial issues to anticipate. Additionally, the frequent switching
between code and comments/prompts suggests a need for im-
proved interfaces in development tools. Visualization tools that
connect prompts with generated code could reduce switching
costs and enhance developers’ understanding and efficiency.

In the future, we plan to systematically investigate the char-
acteristics of LLM-generated code from a human perception
perspective, complementing our behavior-centric approach.
This effort will inform the development of more effective tools
for developers working with LLM-generated code. Addition-
ally, we plan to expand our research to include professional
developers in long-term, real-world studies. We also intend to
incorporate additional biometric sensors, such as heart rate
monitors and fMRI, to gain a better understanding of the
cognitive processes involved in software development.

44

ACKNOWLEDGMENT

This research was supported in part by an AnalytiXIN
Faculty Fellowship, an NVIDIA Academic Hardware Grant,
a Google Cloud Research Credit Award, a Google Research
Scholar Award, and NSF grants CCF-2211428 and CCF-
2100035. Any opinions, findings, or recommendations ex-
pressed here are those of the authors and do not necessarily
reflect the views of the sponsors. We thank Gelei Xu, Junwen
An, and Chaoran Chen for useful discussion and valuable
feedback on the project. We also thank Robert Wallace for
his assistance in setting up the eye tracker.

REFERENCES

[1] J. T. Liang, C. Yang, and B. A. Myers, “A large-scale survey on
the usability of ai programming assistants: Successes and challenges,”
in Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, 2024, pp. 1–13.

[2] S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, “The impact of ai
on developer productivity: Evidence from github copilot,” arXiv preprint
arXiv:2302.06590, 2023.

[3] “Github copilot · your ai pair programmer,” retrieved July 1, 2024 from
https://github.com/features/copilot/.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[5] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[6] Y. Liu, T. Le-Cong, R. Widyasari, C. Tantithamthavorn, L. Li, X.-
B. D. Le, and D. Lo, “Refining chatgpt-generated code: Characterizing
and mitigating code quality issues,” ACM Transactions on Software
Engineering and Methodology, 2023.

[7] H. Mozannar, G. Bansal, A. Fourney, and E. Horvitz, “Reading between
the lines: Modeling user behavior and costs in ai-assisted programming,”
in Proceedings of the CHI Conference on Human Factors in Computing
Systems, 2024, pp. 1–16.

[8] T. J.-J. Li, J. Chen, H. Xia, T. M. Mitchell, and B. A. Myers,
“Multi-Modal Repairs of Conversational Breakdowns in Task-Oriented
Dialogs,” in Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology, ser. UIST 2020. ACM, 2020.

[9] S. A. Gebreegziabher, Z. Zhang, X. Tang, Y. Meng, E. Glassman,
and T. J.-J. Li, “Patat: Human-ai collaborative qualitative coding with
explainable interactive rule synthesis,” in Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, ser. CHI ’23.
ACM, 2023.

[10] Z. Ning, Z. Zhang, T. Sun, Y. Tian, T. Zhang, and T. J.-J. Li, “An
empirical study of model errors and user error discovery and repair
strategies in natural language database queries,” in Proceedings of the
28th International Conference on Intelligent User Interfaces, ser. IUI
’23, 2023.

[11] A. M. Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh, M. C. Desmarais,
and Z. M. J. Jiang, “Github copilot ai pair programmer: Asset or
liability?” Journal of Systems and Software, vol. 203, p. 111734, 2023.

[12] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experi-
ence: Evaluating the usability of code generation tools powered by large
language models,” in CHI Conference on Human Factors in Computing
Systems Extended Abstracts, 2022, pp. 1–7.

[13] S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot: How
programmers interact with code-generating models,” Proceedings of the
ACM on Programming Languages, vol. 7, no. OOPSLA1, pp. 85–111,
2023.

[14] N. Al Madi, “How readable is model-generated code? examining
readability and visual inspection of github copilot,” in Proceedings of
the 37th IEEE/ACM International Conference on Automated Software
Engineering, 2022, pp. 1–5.

[15] J. Terrell, A. Kofink, J. Middleton, C. Rainear, E. Murphy-Hill,
C. Parnin, and J. Stallings, “Gender differences and bias in open source:
Pull request acceptance of women versus men,” PeerJ Computer Science,
vol. 3, p. e111, 2017.

[16] N. Imtiaz, J. Middleton, J. Chakraborty, N. Robson, G. Bai, and
E. Murphy-Hill, “Investigating the effects of gender bias on github,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 700–711.

[17] Y. Huang, K. Leach, Z. Sharafi, N. McKay, T. Santander, and W. Weimer,
“Biases and differences in code review using medical imaging and eye-
tracking: genders, humans, and machines,” in Proceedings of the 28th
ACM joint meeting on European software engineering conference and
symposium on the foundations of software engineering, 2020, pp. 456–
468.

[18] I. Bertram, J. Hong, Y. Huang, W. Weimer, and Z. Sharafi, “Trustworthi-
ness perceptions in code review: An eye-tracking study,” in Proceedings
of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2020, pp. 1–6.

[19] A. Eteläpelto, “Metacognition and the expertise of computer pro-
gram comprehension,” Scandinavian Journal of Educational Research,
vol. 37, no. 3, pp. 243–254, 1993.

[20] M. C. Davis, E. Aghayi, T. D. Latoza, X. Wang, B. A. Myers, and
J. Sunshine, “What’s (not) working in programmer user studies?” ACM
Transactions on Software Engineering and Methodology, vol. 32, no. 5,
pp. 1–32, 2023.

[21] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis, 2012, pp. 177–187.

[22] R. Bednarik and M. Tukiainen, “An eye-tracking methodology for
characterizing program comprehension processes,” in Proceedings of
the 2006 symposium on Eye tracking research & applications, 2006,
pp. 125–132.

[23] C. Aschwanden and M. Crosby, “Code scanning patterns in program
comprehension,” in Proceedings of the 39th hawaii international con-
ference on system sciences. Citeseer, 2006.

[24] O. Palinko, A. L. Kun, A. Shyrokov, and P. Heeman, “Estimating
cognitive load using remote eye tracking in a driving simulator,” in
Proceedings of the 2010 symposium on eye-tracking research & appli-
cations, 2010, pp. 141–144.

[25] J. Zagermann, U. Pfeil, and H. Reiterer, “Measuring cognitive load using
eye tracking technology in visual computing,” in Proceedings of the sixth
workshop on beyond time and errors on novel evaluation methods for
visualization, 2016, pp. 78–85.

[26] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,
“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proceedings of the 36th international con-
ference on Software engineering, 2014, pp. 390–401.

[27] A. Bansal, R. Wallace, Z. Karas, N. Tang, Y. Huang, T. J.-J. Li, and
C. McMillan, “Programmer visual attention during context-aware code
summarization,” arXiv preprint arXiv:2405.18573, 2024.

[28] P. Hejmady and N. H. Narayanan, “Visual attention patterns during
program debugging with an ide,” in proceedings of the symposium on
eye tracking research and applications, 2012, pp. 197–200.

[29] M. Kazemitabaar, X. Hou, A. Henley, B. J. Ericson, D. Weintrop, and
T. Grossman, “How novices use llm-based code generators to solve cs1
coding tasks in a self-paced learning environment,” in Proceedings of
the 23rd Koli Calling International Conference on Computing Education
Research, 2023, pp. 1–12.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[31] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[32] “Tabnine ai code assistant — private, personalized, protected,” retrieved
July 1, 2024 from https://www.tabnine.com/.

[33] A. Ziegler, E. Kalliamvakou, X. A. Li, A. Rice, D. Rifkin, S. Simister,
G. Sittampalam, and E. Aftandilian, “Productivity assessment of neural
code completion,” in Proceedings of the 6th ACM SIGPLAN Interna-
tional Symposium on Machine Programming, 2022, pp. 21–29.

[34] T. Wu, K. Koedinger et al., “Is ai the better programming partner?
human-human pair programming vs. human-ai pair programming,” arXiv
preprint arXiv:2306.05153, 2023.

45

[35] M. Amoozadeh, D. Daniels, D. Nam, A. Kumar, S. Chen, M. Hilton,
S. Srinivasa Ragavan, and M. A. Alipour, “Trust in generative ai
among students: An exploratory study,” in Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1, 2024, pp.
67–73.

[36] R. Brooks, “Towards a theory of the cognitive processes in computer pro-
gramming,” International Journal of Human-Computer Studies, vol. 51,
no. 2, pp. 197–211, 1999.

[37] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering-Volume 1, 2010, pp. 185–194.

[38] A. Alaboudi and T. D. LaToza, “What constitutes debugging? an
exploratory study of debugging episodes,” Empirical Software Engineer-
ing, vol. 28, no. 5, p. 117, 2023.

[39] K. Araki, Z. Furukawa, and J. Cheng, “A general framework for
debugging,” IEEE software, vol. 8, no. 3, pp. 14–20, 1991.

[40] D. J. Gilmore, “Models of debugging,” Acta psychologica, vol. 78, no.
1-3, pp. 151–172, 1991.

[41] A. Liu and M. Coblenz, “Debugging techniques in professional pro-
gramming.” Plateau Workshop.

[42] N. Nguyen and S. Nadi, “An empirical evaluation of github copilot’s
code suggestions,” in Proceedings of the 19th International Conference
on Mining Software Repositories, 2022, pp. 1–5.

[43] Y. Li, Y. Peng, Y. Huo, and M. R. Lyu, “Enhancing llm-based coding
tools through native integration of ide-derived static context,” arXiv
preprint arXiv:2402.03630, 2024.

[44] S. Imai, “Is github copilot a substitute for human pair-programming? an
empirical study,” in Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings, 2022,
pp. 319–321.

[45] M. A. Just and P. A. Carpenter, “A theory of reading: from eye fixations
to comprehension.” Psychological review, vol. 87, no. 4, p. 329, 1980.

[46] N. Ali, Z. Sharafi, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical
study on the importance of source code entities for requirements
traceability,” Empirical software engineering, vol. 20, no. 2, pp. 442–
478, 2015.

[47] S. Maan, “Representational learning approach for predicting developer
expertise using eye movements,” 2020.

[48] N. Tang, J. An, M. Chen, A. Bansal, Y. Huang, C. McMillan, and T. J.-J.
Li, “Codegrits: A research toolkit for developer behavior and eye track-
ing in ide,” in Proceedings of the 2024 IEEE/ACM 46th International
Conference on Software Engineering: Companion Proceedings, 2024,
pp. 119–123.

[49] “Challenge 12: Kakamora,” retrieved July 1, 2024 from
https://www3.nd.edu/ pbui/teaching/cse.30872.fa22/challenge12.html.

[50] “Programming paradigms summer 2022 - nd,” retrieved July 1, 2024
from https://www3.nd.edu/ skumar5/teaching/2022-summer-pp.html.

[51] B. Beizer, Software testing techniques. Dreamtech Press, 2003.
[52] “Reach further with your research — tobii pro fusion,” retrieved

July 1, 2024 from https://www.tobii.com/products/eye-trackers/screen-
based/tobii-pro-fusion.

[53] S. G. Hart, “Nasa task load index (tlx),” 1986.
[54] Z. Sharafi, B. Sharif, Y.-G. Guéhéneuc, A. Begel, R. Bednarik, and

M. Crosby, “A practical guide on conducting eye tracking studies in
software engineering,” Empirical Software Engineering, vol. 25, no. 5,
pp. 3128–3174, 2020.

[55] Z. Sharafi, T. Shaffer, B. Sharif, and Y.-G. Guéhéneuc, “Eye-tracking
metrics in software engineering,” in 2015 Asia-Pacific Software Engi-
neering Conference (APSEC). IEEE, 2015, pp. 96–103.

[56] M. Dorr, T. Martinetz, K. R. Gegenfurtner, and E. Barth, “Variability
of eye movements when viewing dynamic natural scenes,” Journal of
vision, vol. 10, no. 10, pp. 28–28, 2010.

[57] H. Sheridan and E. M. Reingold, “Chess players’ eye movements reveal
rapid recognition of complex visual patterns: Evidence from a chess-
related visual search task,” Journal of vision, vol. 17, no. 3, pp. 4–4,
2017.

[58] M. Brod, L. E. Tesler, and T. L. Christensen, “Qualitative research
and content validity: developing best practices based on science and
experience,” Quality of life research, vol. 18, pp. 1263–1278, 2009.

[59] J. Lazar, J. H. Feng, and H. Hochheiser, Research methods in human-
computer interaction. Morgan Kaufmann, 2017.

[60] A. Sarkar, A. D. Gordon, C. Negreanu, C. Poelitz, S. S. Ragavan, and
B. Zorn, “What is it like to program with artificial intelligence?” arXiv
preprint arXiv:2208.06213, 2022.

[61] R. Yen, J. Zhu, S. Suh, H. Xia, and J. Zhao, “Coladder: Supporting pro-
grammers with hierarchical code generation in multi-level abstraction,”
arXiv preprint arXiv:2310.08699, 2023.

[62] P. Alex, “Eye tracking in human-computer interaction and usability
research: Current status and future prospects,” The Encyclopedia of
Human Computer Interaction, pp. 211–219, 2005.

APPENDIX

TABLE I
BUG TYPES REPRESENTED IN PROGRAMMING TASKS BASED ON [51].

Task Subtask Bug Index Bug Category

Kakaroma

1.1 231x Missing Case

1.2
3226.4 String Manipulation-Insertion
3126 Illogic Predicates
231x Missing Case

Calculator 2.1 6125 Parameter Value
2.2 614x Initialization State

ZooSystem

3.1 6125 Parameter Value

3.2 6112 Wrong Component
6125 Parameter Value

3.3 4164 Should be Dynamic Resource
3.4 6112 Wrong Component
3.5 413x Initial, Default Values

TABLE II
CATEGORIZATION OF DEVELOPER BEHAVIOR EMERGED FROM IDE AND

EYE TRACKING DATA COLLECTED BY CODEGRITS [48].

Index Behavior Tracking Data

1 Reading Document Consecutive fixations on the instruc-
tional document

2 Reading Code Consecutive fixations on the code
3 Reading Comment Consecutive fixations on the comment

4 Switching Files Opening, closing, or changing the se-
lection of a file

5 Scrolling Scrolling a file via mouse wheel, arrow
keys, or touchpad gestures

6 Tracing Code Searching tokens, finding usages or go-
ing to declarations

7 Running for Output Running the class to obtain execution
output

8 Employing Debugger Utilizing debugger and its correspond-
ing features (e.g., toggling breakpoints)

9 Invoking Copilot Accepting, rejecting, or browsing code
generated from Copilot

10 Utilizing Clipboard Copying, cutting, or pasting contents
11 Keystrokes Typing Typing characters using keystrokes

46

