
Towards Effective Validation and Integration of
LLM-Generated Code

Ningzhi Tang, ntang@nd.edu, University of Notre Dame, Notre Dame, IN, USA

Abstract—Recent advances in large language model (LLM)-
based code generation tools have shown the potential to lower
the barrier to programming and improve developer productivity.
However, validating the generated codes and integrating them
into projects present significant challenges, especially for develop-
ers with limited expertise or domain-specific knowledge. I present
a novel approach to help developers understand and modify
LLM-generated code to align with their intentions, informed by
my empirical study of developer behaviors when working with
LLM code generation models. In the future, I propose to extend
the work to include support for project-level code validation,
dynamic program behavior integration, developer behavioral and
cognitive context modeling, and computer science education.

Index Terms—large language model, debugging, developer
behavior, code generation.

I. BACKGROUND

The increasing use of large language model (LLM)-powered
programming tools, such as GitHub Copilot, has shown the
potential to generate high-quality code snippets, thus improv-
ing productivity [1]. However, the generated code may not
always align with the developers’ intentions, posing challenges
for integrating the code into their projects [2]. Furthermore,
developers’ intents should be gradually clarified during the
programming process, necessitating good interaction tech-
niques to iteratively validate and modify LLM suggestions [3].

Compared to traditional debugging, developers face unique
challenges when validating and integrating LLM-generated
code in three aspects: code understanding, information ac-
quisition, and attention focus. Firstly, developers must ex-
ert additional effort to understand the code, as it can be
lengthy [3], contain excessive control structures, or use unfa-
miliar APIs [1]. Conversely, they would be already familiar
with the structure and details of code written by them-
selves. Secondly, LLMs typically generate continuous local
code snippets (e.g., a method or class) based on existing
contexts. This requires developers to quickly validate and
decide whether to accept, modify, or discard them. In contrast,
traditional debugging may require more effort in seeking,
relating, and collecting information throughout the project
to locate bugs [4]. Thirdly, our empirical study found that,
compared to human-written code, LLM-generated code often
excels in detail, but falls short in logical structure, necessitating
different validation and modification strategies [5].

These unique challenges in the code validation and integra-
tion process may be even more difficult for novice developers,
turning LLM into a “liability” instead of an “asset” [6].
LLMs hold the promise of lowering the barriers for novice
developers, or developers who are only experts in other lan-
guages/frameworks, by allowing them to describe their needs

in natural language and prompt the LLM for the desired
output. However, compared to experts, they may lack sufficient
expertise to understand the code, determine its correctness, and
make modifications [7]. This gap calls for research efforts in
empirical studies and tool development for code generation.

Although LLMs introduce new challenges, they also show
the potential to alleviate them, though not perfectly. From the
validation perspective, our previous study found that develop-
ers use Copilot to generate natural language explanations for
code, helping them understand and validate it [5]. However,
these generated explanations are scattered and have an uncon-
trolled level of detail. From the integration perspective, 40%
of developers modify or rewrite prompts to make the LLM
edit or regenerate the code [1]. However, the descriptions for
regenerating requirements may still be ambiguous and fail to
express developers’ intent accurately. These issues imply the
need for research into dynamic levels of abstraction of de-
veloper intents and better support for developers to iteratively
disambiguate their intents with code generation models.

II. OUR APPROACH AND PROGRESS TO DATE

In this section, we present our progress. We developed
CodeGRITS [8], an eye-tracking and IDE behavior-logging
toolkit to track developer behavior. Using it, we studied how
developers validate and repair LLM-generated code. From
these insights, we proposed a tool to assist in this process.

A. CodeGRITS: Developer Behavior and Eye Tracking in IDE

Tracking developers’ programming behavior can help us
quantitatively understand their software development pro-
cess [9]. We developed CodeGRITS, a JetBrains plugin that
can simultaneously track developers’ IDE interactions and eye
movements. It collects raw gaze data from eye-tracking de-
vices and interprets them into the corresponding code tokens.
The tracked data are exported in XML files. CodeGRITS
supports multiple IDEs (e.g., IntelliJ IDEA, PyCharm) and
interprets all IDE-supported languages’ abstract syntax tree
(AST). We have open-sourced CodeGRITS1 with a website
(e.g., usage guide, output format) and JavaDoc documentation.

B. Empirical Insights into LLM Code Validation and Repair

To investigate how developers validate and repair LLM-
generated code and to examine the impact of code provenance
awareness during these processes, we conducted a lab study
with 28 participants, who were tasked with validating and
repairing code generated by GitHub Copilot in three soft-
ware projects [5], [10]. We collected data using CodeGRITS,

1https://codegrits.github.io/CodeGRITS/

369

2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

1943-6106/24/$31.00 ©2024 IEEE
DOI 10.1109/VL/HCC60511.2024.00051

combined with cognitive workload assessments and semi-
structured interviews. Our results indicate that without explicit
information, developers often fail to recognize the provenance
of the code, which can affect their performance, behaviors,
and cognitive workload. Developers generally employ similar
validation and repair strategies for LLM-generated code but
exhibit distinct behaviors such as frequent switching between
code and comments, and differing attentional focuses.

C. Multi-Level Explanation & Procedurally Prompted Editing

Based on insights from previous research and our study, we
designed an IDE plugin (Fig. 1) to help developers understand
LLM-generated code through multi-level code summarization
and further edit it using procedural prompts.
(a) Multi-Level Explanation. Given a segment of LLM-

generated code, e.g., a method (A), our prototype de-
composes it into a tree structure based on its AST. Then
it generates natural language explanations for each node
to aid understanding (B). Developers can freely explore
different levels of explanation by clicking on either the
code or a tree node. The corresponding code snippet will
be highlighted with a red box, and the corresponding
explanation will be displayed in a panel (C).

(b) Procedurally Prompted Editing. Conversely, developers
can edit the multi-level code summaries to express their
intentions, using these modifications as prompts for the
LLM to refine unsatisfactory code (D). Changes to the
summaries will be highlighted in red text. The procedural
prompts can more accurately express developers’ intents
compared to merely changing the original descriptive
prompts for the LLM. The differences between the LLM-
edited and previous code will be visualized, allowing
developers to decide whether to accept the changes (E).

The multi-level summaries allow developers to understand
the code at various detail levels. Developers can also modify
it to procedurally prompt the LLM to refine the code, enabling
more accurate expressions of their intentions. We will conduct
a usability study to evaluate our prototype’s effectiveness.

III. PROPOSED FUTURE WORK

Our proposed system can potentially help developers val-
idate and integrate LLM-generated code, but it currently
presents several limitations in its scope and applications. We
plan to extend it in four areas: (1) project-level code valida-
tion, (2) dynamic program behavior integration, (3) developer
context personalization, and (4) computer science education.

Firstly, we will expand the scope of our system from local
code snippets to cross-file, project-level code. While devel-
opers currently use LLMs mainly for generating the former,
future tools may handle larger codebases [9]. Exploring this
expansion will further enhance their programming workflow.

Secondly, we will expand our system to understand both
static and dynamic program behaviors. Besides static code,
dynamically understanding the program, e.g., inserting print
statements or using an IDE debugger to inspect runtime behav-
ior, is a crucial part of debugging [10]. Similarly, in front-end

 (left <= right) { 
mid = left + (right - left) / ; 
(arr[mid] == element) {

 (mid > && arr[mid -] == element) {

 mid--;

 } 
 mid;

while
 int
 if
 while

 return

2

0 1

E

1 Method:binarySearch
1.1 Declaration
1.2 While

1.2.1 Declaration
1.2.2 If
1.2.3 If

1.3 Return

// Returns the element’s index if present in the array; otherwise, returns -1

public static int int int

int
while

 int
 if return
 if

 else

 return -1

 ([] arr, element) {

 left = , right = array. - ;

 (left <= right) { 

 mid = left + (right - left) / ; 
 (arr[mid] == element) mid; 

 (arr[mid] < element) left = mid + ; 
 right = mid - ; 
 } 
 ; 
}

binarySearch
0 1

2

1
1

length

A

[Compares] the middle element
[with] the target and  
updates the left and right pointers.

Tests whether
is left-most D

Compares the middle element with the
target and updates the left and right
pointers. C

B

Fig. 1. Framework of the designed prototype.

development, developers verify implementations by inspecting
webpages or GUI visualizations. For AI modeling, debugging
involves logging changes in loss, accuracy, or other metrics.

Thirdly, we plan to design personalized systems based on
developers’ behavioral and cognitive contexts [8]. CodeGRITS
can track developers’ IDE interactions and eye movements,
providing rich contextual information about their behavioral
focus and cognitive states. Incorporating such context can offer
personalized support for their software development processes.

Finally, we are also interested in exploring how our sys-
tem can help novices learn programming. Validating LLM-
generated code may be more challenging for beginners, hinder-
ing the democratization of programming [7]. We will design
educational systems to teach them to use LLMs effectively,
ensuring they become “assets” rather than “liabilities”.

REFERENCES

[1] J. T. Liang et al., “A large-scale survey on the usability of ai program-
ming assistants: Successes and challenges,” in ICSE, 2024.

[2] H. Mozannar et al., “Reading between the lines: Modeling user behavior
and costs in ai-assisted programming,” in CHI, 2024.

[3] S. Barke et al., “Grounded copilot: How programmers interact with
code-generating models,” ACM Program. Lang., no. OOPSLA1, 2023.

[4] A. J. Ko et al., “An exploratory study of how developers seek, relate, and
collect relevant information during software maintenance tasks,” IEEE
Trans. Softw. Eng., 2006.

[5] N. Tang et al., “Developer behaviors in validating and repairing llm-
generated code using ide and eye tracking,” in VL/HCC, 2024.

[6] A. M. Dakhel et al., “Github copilot ai pair programmer: Asset or
liability?” J. Syst. Softw., 2023.

[7] S. Nguyen et al., “How beginning programmers and code llms (mis)
read each other,” in CHI, 2024.

[8] N. Tang et al., “Codegrits: A research toolkit for developer behavior
and eye tracking in ide,” in ICSE-Companion, 2024.

[9] A. Bansal et al., “Programmer visual attention during context-aware
code summarization,” arXiv preprint arXiv:2405.18573, 2024.

[10] N. Tang et al., “An empirical study of developer behaviors for validating
and repairing ai-generated code,” in PLATEAU, 2023.

370

