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Abstract—This paper presents a study of using large language
models (LLMs) in modifying existing code. While LLMs for
generating code have been widely studied, their role in code
modification remains less understood. Although ‘prompting”
serves as the primary interface for developers to communi-
cate intents to LLMs, constructing effective prompts for code
modification introduces challenges different from generation.
Prior work suggests that natural language summaries may help
scaffold this process, yet such approaches have been validated
primarily in narrow domains like SQL rewriting. This study
investigates two prompting strategies for LLM-assisted code
modification: Direct Instruction Prompting, where developers
describe changes explicitly in free-form language, and Summary-
Mediated Prompting, where changes are made by editing the
generated summaries of the code. We conducted an exploratory
study with 15 developers who completed modification tasks using
both techniques across multiple scenarios. Our findings suggest
that developers followed an iterative workflow: understanding the
code, localizing the edit, and validating outputs through execution
or semantic reasoning. Each prompting strategy presented trade-
offs: direct instruction prompting was more flexible and easier to
specify, while summary-mediated prompting supported compre-
hension, prompt scaffolding, and control. Developers’ choice of
strategy was shaped by task goals and context, including urgency,
maintainability, learning intent, and code familiarity. These
findings highlight the need for more usable prompt interactions,
including adjustable summary granularity, reliable summary-
code traceability, and consistency in generated summaries.

Index Terms—code modification, Al-assisted programming,
prompting strategies, summary-mediated interaction

I. INTRODUCTION

The rise of large language models (LLMs) has transformed
how developers interact with code [1], [2]. While much
attention has been given to how LLMs generate new code
implementations from natural language specifications [3], [4],
their role in modifying existing code, a common yet cognitively
demanding task, remains comparatively underexplored. Unlike
code generation, modification requires developers to interpret
existing logic, align their intent with that logic, and ensure
that changes do not introduce regressions [S]-[7]. Despite
complexity, recent evidence shows that editing code via natural
language prompts accounts for a substantial share (831/4,188)
of code-related LLM usage [8], [9], and this functionality
is increasingly supported by production tools like GitHub
Copilot Chat! and Cursor®. This shift also reflects a broader

Uhttps://github.com/features/copilot
Zhttps://www.cursor.com/

trend toward “vibe coding,” where developers delegate code
modifications to Al without making manual edits>.

In such workflows, prompts serve as the primary interface
through which developers communicate intent to LLMs [10],
[11]. However, crafting an effective prompt remains difficult
due to the inherent open-endedness of natural language [12],
[13], uncertainties in LLM predictions [14], [15], and the
often vague or evolving nature of developer intentions [12],
[16]. These challenges become especially prominent in code
modification [17], where the prompt must navigate complex,
pre-existing code contexts and articulate precise changes. De-
velopers struggle to understand unfamiliar logic, locate mod-
ification points, and express intent clearly [18], while LLMs
must respond accurately without introducing side effects [14].

One promising approach to easing prompt construction is
to scaffold it through editable natural language summaries
of existing code, which serve as intermediate representations.
Previous work in constrained domains, such as SQL rewrit-
ing [19], [20] and spreadsheet data analysis [13], [21], has
explored this strategy. They show that the summaries help
bridge the gap between developer intent and LLM outputs,
while also improving code comprehension and giving users
more control over prompt formulation. However, these ap-
proaches have largely been limited to domains with small-scale
code and semantically constrained programming languages,
where summary generation is achieved through predefined
rule-based mappings from code to linearized instructions.
Their application to broader general-purpose programming
scenarios remains underexplored. In these scenarios, both
code semantics and developer modification intentions are
more diverse and less structured. Additionally, general-purpose
code often involves abstract control flow and cross-cutting
dependencies, making rule-based summaries poorly aligned
with human reasoning and task-specific goals.

To bridge this gap, our work investigates how developers use
two prompting techniques in general-purpose programming to
understand the processes, trade-offs, and design implications
of LLM-assisted code modification. This is enabled by LLMs’
ability to generate editable summaries from arbitrary code. As
illustrated in Fig. 1, the two techniques are:

¢ Direct Instruction Prompting: Freely writing natural
language instructions to describe desired changes.

3https://x.com/karpathy/status/1886192184808149383



Direct Instruction Prompt -

- - =2 Modify the sum calculation "~~~ ~_ 4 def average_numbers(numbers):
to compute the average.

def sum_numbers(numbers): , -
total = 0 ‘
for num in numbers:
total += num
return total

\\9 Summary-Mediated Prompt
sumaverage _/‘ -

def sum_numbers(numbers):

(¢

total = 0
for num in numbers:
total += num
return total
+ return total / len(numbers)

Fig. 1. An illustrative example of direct instruction (dashed arrows) and summary-mediated prompting (solid arrows) for LLM-assisted code modification.

o Summary-Mediated Prompting: Editing a natural lan-
guage summary of existing code to specify new behavior.

We conducted an exploratory study with 15 developers (10
graduate students and 5 professionals), who performed code
modification tasks across three scenarios, each containing
multiple sub-requirements. To facilitate the study, we devel-
oped a prototype named PASTA (Prompt-Assisted Software
TrAnsformation), integrated into JetBrains IDEs, which sup-
ports both prompting techniques. We collected interaction
logs for each session. Finally, we conducted semi-structured
interviews in which participants reflected on their experiences.

In each task, we asked participants to switch freely between
prompting approaches and develop hybrid strategies. Unlike
controlled comparisons that focus narrowly on prompting
effectiveness, our open-ended design enables a richer un-
derstanding of developer behavior. This design allows us to
investigate not only which prompting methods developers
prefer, but also how and why they adapt their strategies to
different task contexts, and what usability improvements could
make summary-mediated prompting more effective in practice.
Our study investigates the following research questions:

o RQ1: What are developers’ prompting processes and per-
ceived characteristics of the two prompting techniques?

o RQ2: What task goals and contextual factors influence
developers’ prompting choices?

o RQ3: What usability considerations and design opportu-
nities arise in summary-mediated prompting?

We highlight the following findings.

1) Developers used generated summaries to understand
code, narrow down modifications, and evaluate out-
comes through execution or semantic reasoning. When
specifying changes, they navigated trade-offs: direct
instruction prompting offered flexibility and simplic-
ity, while summary-mediated prompting provided pre-
cise terminology, broader context, and control over
untouched code. Despite requiring more reading, sum-
maries reduced typing and forced deeper understanding.

2) Prompting strategies varied depending on task goals
and contextual factors: developers favored direct in-
structions when changes were urgent, simple, large in
scope, or clearly defined, and used summaries to support
comprehension and control when aiming for long-term
maintainability, learning, or bug avoidance, or when
working with unfamiliar or complex code. These needs
for deeper understanding and careful validation were

amplified in industrial settings, where codebases are
large, interdependent, and beyond LLM knowledge.

3) The usability of summary-mediated prompting depended
on granularity and alignment with developers’ goals;
participants called for structured formats, flexible detail
levels, summary-code mappings, and consistent outputs
to support efficient comprehension and accurate edits.

II. RELATED WORK
A. LLM-Assisted Code Modification

Code modification accounts for a substantial portion of
software development effort [6], [7]. Researchers have focused
on automating specific modification tasks using LLMs, includ-
ing bug fixing [22]-[25] and refactoring [26]. For instance,
Xia et al. [27] improved patch generation in program repair
by integrating real-time feedback into LLMs. In more general
settings, datasets like InstructCoder [28] and CANITEDIT [9]
framed LLM code modification as mapping from (original
code + instruction) to modified code. Cassano et al. [9] found
that descriptive instructions consistently outperform vague
ones, but impose a high developer workload. Shi et al. [29]
similarly demonstrated the technical feasibility of using LLM-
generated summaries for synchronized code editing, focusing
on summary quality in surface-level editing cases.

While these works highlight what LLMs can accomplish
for code modification, they pay limited attention to how de-
velopers actually formulate prompts in practice. In production
tools like Cursor, prompting typically occurs through inline
code selection or chat-based interfaces. A growing trend,
popularized by Karpathy as “vibe coding,” involves describing
modifications in natural language and delegating implemen-
tation details to LLMs, often without manually reviewing
the resulting code. Our study fills this gap by examining
developers’ prompting strategies in such workflows.

B. Developers’ Interaction with LLMs

User-centered studies have extensively examined how de-
velopers interact with LLM-powered tools and their perceived
effectiveness [1], [2], [4], [30]-[34]. LLMs have been shown
to improve productivity [32], [35], but the code they generate
often contains functionality issues [1], [33], requiring signifi-
cant developer effort to verify and repair [2], [30], accounting
for up to 38% of developers’ time [34]. Despite the prevalence
of code modification in LLM workflows [9] and its support in
production tools, few studies have examined how developers
construct and adapt prompts in these contexts.



Non-expert developers face additional barriers, including
limited vocabulary for prompting and difficulty understanding
generated code [36]-[38]. Modifying unfamiliar or legacy code
imposes additional cognitive overhead, as developers must
first comprehend existing code before making changes [39],
[40]. To investigate these interactions, our study focuses on
code editing tasks involving technically unfamiliar frameworks
(e.g., TensorFlow, D3.js) in realistic programming scenarios.

Sarkar et al. [15] characterize the difficulty of iteratively
aligning user intent with LLM outputs as an ‘“abstraction
matching” problem [13], [15]. This echoes Don Norman’s
“gulf of execution” [41]: getting the system to do what the
user intends. Several systems have addressed this gap in code
generation through structured interaction design [42]-[47].
They target new code generation rather than code modification,
which requires interpreting existing logic and making iterative
changes. We fill this gap by examining interactive prompting
for code transformation.

C. Prompting Strategies for LLM Programming

Many LLM-based programming systems rely on natural
language prompting [10], [48], [49], but prompting remains
cognitively demanding, especially for non-experts [1], [14],
[50]-[52]. Users often struggle with getting started [16] and
expend significant metacognitive effort throughout the pro-
cess [12], [17], including decomposing tasks and adjusting
prompting strategies over time. Various prompting techniques
have been proposed to better align LLM outputs with human
intent [11], [53]-[55]. For instance, few-shot prompting [10]
and chain-of-thought reasoning [53] enhance performance by
providing contextual examples and intermediate reasoning
steps. In programming contexts, developers use tactics such
as giving examples, stating coding goals, or iterating through
multi-turn conversations [17], [56], [57].

Recent studies have explored using intermediate represen-
tations to scaffold prompting, such as sketches [58], visual
data operations [46], and editable natural language summaries.
Liu et al. [13] proposed “grounded abstraction matching,”
translating Pandas code into natural-language utterances to
support prompt refinement. Similarly, Tian er al. [19], [20]
used stepwise SQL explanations to help users identify and
correct errors. These approaches improved task accuracy and
user confidence but were limited to rule-based mappings in
constrained domains. Rawal et al. [59] further showed that
natural-language versions of code improved debugging perfor-
mance in algorithmic tasks, suggesting the broader potential
of summaries to support modification. However, it remains
unclear how well these techniques apply to general-purpose
programming, where code semantics and developer intent are
more complex, motivating us to investigate how they function
in real-world development contexts.

III. STUDY DESIGN

We conducted an exploratory study* to understand how
developers modify existing code using two prompting tech-

4The study protocol has been approved by the IRB at our institution.

niques: Direct Instruction Prompting, where users write nat-
ural language commands, and Summary-Mediated Prompting,
where they edit LLM-generated summaries. Rather than run-
ning a controlled comparison, we aimed to observe how par-
ticipants naturally adopt, combine, and adapt these strategies
in realistic, iterative coding scenarios.

A. Programming Tasks

We created three tasks across diverse domains (deep learn-
ing, data visualization, and web development), implemented
using Python, JavaScript, HTML, and CSS. Each task involved
a familiar domain to the participants but incorporated pro-
gramming techniques that they are less familiar with, allowing
us to examine how technical familiarity influences prompting
behavior [36]. Task design followed a structured, goal-driven
process. One author first defined the domain scope and target
technique. The programming scenarios were iteratively refined
by the research team to balance realism and controllable
complexity. Each task had a baseline implementation, followed
by exploratory ideation to identify plausible enhancements in
algorithm design, UI, or interaction. We selected final tasks
based on: (1) completion within 20 minutes; and (2) coverage
across diverse domains, code structures, and modification
types, including both logic- and interface-level changes.

o Task 1. TensorFlow Autoencoder (deep learning). Mod-
ify a TensorFlow-based sparse autoencoder to update its
model architecture, loss function, and learning schedule.

o Task 2. D3.js LineGraph (data visualization): Enhance
the X-axis markers and point labels of a D3.js line graph
visualizing skin cancer detection accuracy.

o Task 3. Chrome Extension Translator (web development):
Improve the button effects, UI style, and front-end to
back-end communication of a Chrome extension that
integrates OpenAI’s API to perform machine translations.

B. Farticipants

We recruited 15 participants (10 male, 5 female; ages 22-
30, M = 25.1, SD = 2.46) through purposive sampling [60].
All had prior experience with Python and JavaScript and were
majoring in computer science or relevant engineering fields.
The group included 10 graduate students and 5 professional
developers, with an average of 6.94 years of programming
experience. Each received a $66 Amazon gift card as com-
pensation for their time. All participants had used LLM tools
for programming and code modification tasks (e.g., bug fixing
and refactoring), such as ChatGPT (12), GitHub Copilot (11),
Claude (9), DeepSeek (6), and Cursor (4).

Most participants had general domain experience across the
three task scenarios (13/15, 15/15, and 14/15), but technical
familiarity varied: for TensorFlow, 3 had never used it, 9
were unfamiliar, and 3 were proficient; for D3.js, 9 had never
used it, 5 were unfamiliar, and 1 was proficient; for Chrome
Extension, 5 had never tried, 7 were unfamiliar, and 3 were
proficient. A summary of each participant’s demographics and
technical background is presented in Table I.



C. PASTA: Study-Enabling Prototype

To investigate how developers use two prompting
techniques in real-world code modification, we developed
PASTA’, a JetBrains IDE plugin that supports both approaches.

1) Interface: Fig. 2 shows the interface of PASTA. Devel-
opers begin by selecting a region of code in the editor using
the mouse (left panel), then specify their intended modification
using one of two prompting methods (right panel).

In summary-mediated prompting, clicking Q_ Retrieve Sum-
mary generates a 1-3 sentence natural language description
of the selected code. The summary adapts to the length and
complexity of the code. Pilot testing revealed that overly
detailed summaries hindered usability, so we adopted a concise
summarization policy. The generated summary appears in
the top text field and can be freely edited to express the
intended change. Developers can click & Diff Summaries
to highlight insertions and deletions, aiding summary
revision. In direct instruction prompting, developers write a
natural language command in the bottom text field to specify
the desired modification directly.

Clicking ¢ Commit Prompt in either mode submits the
selected code, the file context, and either the edited summary
or the free-form instruction to the LLM. The returned code
is shown in a diff view with line- and token-level highlights,
enabling developers to inspect, validate, and selectively accept
changes. A loading indicator signals that the LLM is process-
ing the prompt, providing users with timely visual feedback.

2) Implementation: PASTA is implemented as a plugin
using the official Intelli] SDK® and is compatible with all
JetBrains IDEs, including PyCharm and WebStorm, which
were used in our study. The interface is integrated as a tool
window panel, with functional buttons implemented via the
AnAction interface. The summary diff feature is supported
by the Java Diff Utils library’, while code diffing leverages
the default diff package provided by the SDK. LLM-powered
functionality is built on OpenAI’s GPT-40® chat completions
API. To improve in-context learning and ensure output consis-
tency, we include a set of few-shot examples in each prompt.

Unlike rule-based summary systems developed for SQL or
tabular data [13], [20], our approach leverages LLM general-
ization to describe arbitrary code without predefined templates.
Although this sacrifices strict one-to-one correspondence be-
tween code and summary, it allows broader applicability across
diverse programming domains.

3) Design Decisions: In designing PASTA, we made several
key decisions to support effective prompting while maintaining
compatibility with existing Al-assisted coding workflows.

Selection-Based Prompting. Contemporary Al code edi-
tors, such as Cursor and GitHub Copilot Chat, typically offer
two ways to specify target code for modification: (1) using the
@ symbol in a chat interface to reference code, or (2) directly

5Code available at: https:/github.com/TTangNingzhi/PASTA
Ohttps://plugins.jetbrains.com/docs/intellij/welcome.html
"https://java-diff-utils.github.io/java-diff-utils/
8https://openai.com/index/hello- gpt-4o/

selecting code in the editor before entering a prompt. We adopt
the latter selection-based approach for its simplicity, ease of
integration, and natural alignment with summary generation,
enabling a fair comparison between prompting techniques.
Context-Aware Interaction. Prior work shows that incor-
porating relevant context, e.g., current file [61], [62], call
graphs [63], can improve LLM output for code tasks. Since
our focus is not on comparing context strategies, we adopt an
approach that includes the full content of the current file as
context. This method is simple and effective for lightweight
tasks, whereas how to effectively integrate broader context in
large repositories remains a challenging and open question®.

D. Study Protocol

1) Settings: We conducted this study on a Windows 11
computer with PyCharm and WebStorm 2024.3 installed,
along with our enabling research prototype, PASTA (Sec-
tion III-C). Participants accessed the computer via Zoom’s
remote screen control. We instructed participants to view the
study instructions on a separate device (e.g., iPad or second
screen) to save screen space and prevent direct copy-pasting
into prompts. During the study, we collected interaction logs
from PASTA, including timestamps, selected code snippets,
prompts, and LLM-generated summaries or modifications.

2) Procedure: Each study session lasted approximately 2
hours. We asked participants to sign a consent form and com-
plete a pre-study questionnaire collecting their demographic
information and prior experience with programming and LLM
usage. We then provided a brief introduction to the study
objectives, followed by a short tutorial on the two prompting
ways through PASTA. Before starting the programming tasks,
participants were given 5 minutes to try out both prompting
methods on an example task.

The order of the three tasks was randomized to mitigate
learning effects [64]. For each task, participants first read
an instructional document describing the background of the
task and the required modifications. They were then given 20
minutes to complete each task. Participants were free to use
either prompting technique; however, they were encouraged to
use PASTA to prompt (in either technique) rather than editing
manually. Participants were free to ask the study coordinator
how to run the code and check the results. We recorded task
completion and logged the time taken for each task.

After completing each task, participants filled out a NASA
Task Load Index (NASA-TLX) questionnaire [65] to self-
report their cognitive workload. NASA-TLX is a widely used
subjective tool that measures the user’s perceived workload
when performing a task. It includes six dimensions: Mental
Demand, Physical Demand, Temporal Demand, Performance,
Effort, and Frustration. We also asked participants to self-
report their code understanding and editing effort.

After completing all tasks, participants filled out a utility
evaluation questionnaire with Likert scale items to assess
their experience with each prompting technique, including

9https://x.com/karpathy/status/1937902205765607626



2 main.py

1usage Vi

def greet_user():
name = input(“Enter your name: ").strip()
if not name:
print("Hello, stranger!")

else:
print(f"Hello, {name}!"

" _main__": eeee----d

if __name__ ==
greet_user()
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Summary-Mediated Prompt ~ * ;
Check if the variable ‘name' is empty. If R L b
‘name’ is empty, i Y

prompt the user to

enter the name again. Otherwise, print a

personalized greeting using the provided

‘name’.

Direct Instruction Prompt

Fig. 2. Interface of the prototype plugin PASTA, integrated into JetBrains IDEs (e.g., PyCharm, WebStorm).

their ease of use, effectiveness in code comprehension and
modification, sense of control, and satisfaction with LLM-
generated modifications. Finally, we conducted a 25-minute
semi-structured interview of participants’ experiences when
using the two prompting techniques. The interview covered
topics including prior experience with LLM-based code mod-
ification, challenges in prompting and validation, perceived
control over LLM-generated changes, and preferences between
the two prompting techniques. We also explored participants’
views on the usability of generated summaries and potential
improvements to summary-mediated prompting.

E. Data Analysis

We transcribed all post-study interviews and conducted a
qualitative analysis following open coding procedures [66],
[67]. In the first stage, two authors collaboratively reviewed
interview transcripts and extracted 174 meaning-rich segments
related to developers’ prompting strategies, decision-making
processes, and challenges. These segments served as the units
of analysis. Based on these segments, the authors developed an
initial hierarchical codebook, consisting of high-level themes
and nested subcodes. The codebook was iteratively refined
through discussion. In the second stage, both authors inde-
pendently coded all segments using the initial codebook. We
assessed inter-coder reliability using both agreement rate and
Cohen’s k, which yielded an agreement of 63.8% and &
0.626, indicating substantial consistency [68]. Disagreements
were resolved through discussion.

To analyze the interaction logs of the two prompting
choices, we used Student’s t-test for group comparisons with
unequal sample sizes, reporting both the mean and p-value. For
Likert-scale utility ratings, we applied the Wilcoxon signed-
rank test, given the ordinal nature of the data and small sample
size, and reported the median and p-value.

IV. STUDY RESULTS
A. Prompting Processes and Perceived Characteristics

In this section, we present a process model of LLM-assisted
code modification (Fig. 3), highlighting how the two prompt-
ing strategies support different stages, from understanding and

Understand Existing Code Specify Desired Changes

Progressively Localize Direct Instruction Prompt
Modification Points > e Flexibility
) N « Ease of Specification
Determine If Intended Location
T ' Reading Time Typing Effort
« Accurate Technical Vocabulary
o ge . « Comprehensive Prompt Construction

Validate Modification Output  —> | SOmPTEenone eme
Execution Results  Code Semantics ¢ » Force Deeper Comprehension

Commit Prompt to LLM

Fig. 3. A process model of developer-LLM interaction for code modification,
highlighting complementary trade-offs between prompting strategies.

localization to specifying and validating changes, and analyze
how summaries can first aid comprehension and later serve as
a medium for constructing prompts during modification.

1) Summaries Scaffold Code Understanding and Local-
ization: Before specifying changes, developers first need to
understand the existing code and progressively localize the
modification point (Fig. 3), a process where summaries played
a key role. As P5 summarized, “Summary helped in two ways:
understanding the code and deciding which part to modify.”

Summaries support comprehension of unfamiliar code
(Q1). Participants found summaries helpful for understanding
code that they hadn’t authored themselves (P1, P2, P3, P5, P6,
P8, P9, P12, P13), noting they “saved much time compared to
looking into the documentation. (P15)” P3 added, “Through
the natural language description, I can infer where the bug
might be,” echoing findings that natural language improves bug
detection by making program logic more explicit [59]. Quan-
titative results also support this role: summaries were rated
more helpful for understanding code (Fig. 4 Ql1, 6.0 > 4.0,
p = 0.0044 < 0.01). Usage logs confirm frequent summary
use, averaging 3.07, 4.00, and 5.33 invocations per task.

Summaries enable developers to progressively localize
the modification point and determine if it was the intended
location (P1, P3, P5, P8, P9, P14). “Figuring out where
to modify is challenging” (P14) [18], but summaries helped
narrow the scope. As P9 described, “I start by summarizing
the entire file to understand its purpose, then gradually narrow
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(p < 0.05), based on Wilcoxon signed-rank tests. No significant differences were observed for Q4-Q8.

the scope to a 50-line function that reveals internal logic”.
Similarly, P14 used the summaries to “tell me what each line
does” before locating the target section. As they refined the
scope, participants continuously checked whether the selected
code aligned with their editing intent. As P1 reflected, “I
might think, ‘Okay, this function is not the one that I should
modify. I need to switch to another function and check.”
This progressive narrowing process echoes cognitive models
of code navigation and bug localization [5], [69], where the
iterative generation of summaries serves as a lightweight
strategy to support hypothesis formulation and validation.
Despite reading effort, developers frequently used sum-
maries before choosing prompting strategies. Some partici-
pants (P1, P2, P13, P15) noted that long or detailed summaries
slowed their workflow; P2 remarked, “As a non-native English
speaker, it took me some time to read the summarization
response.” Structuring summaries and adding visual code
mappings were suggested to improve comprehension (see
Section IV-C2). Despite the overhead, many participants (P1,
P2, P5, P8, P9, P12, P13, P14) reported a common pattern:
they first used summaries to understand the code, narrow the
scope, and then selected prompting strategies accordingly.

Direct Instruction Prompt
Replace ReLU with Leaky ReLU (alpha = 0.1) in the first
dense layer. Change the second layer’s activation to tanh.

Summary-Mediated Prompt

Leaky (alpha 0.1)

stgmeidtanh
self.encoder = keras.Sequential([
- Dense(128, activation="relu"),
- Dense(encoding_dim, activation="sigmoid"),
+ Dense(128, activation=LeakyReLU(alpha=0.1)),
+ Dense(encoding_dim, activation="tanh"),

D

Fig. 5. Example prompts for fulfilling the first requirement in Task 1.

2) Specifying Changes: Balancing Control, Effort, and Ex-
pressiveness: Once developers identified where to modify,

they adopted two distinct strategies to specify the desired
changes: direct instruction prompting (63.2% usage), which
offers ease and flexibility, and summary-mediated prompting
(36.8% usage), which provides scaffolding and finer control
over the changes (Fig. 3). Across all subtasks, 42.2% used
direct-only, 31.9% summary-only, and 25.9% mixed prompt-
ing, with respective success rates of 84.2%, 93.0%, and 80.0%.

Direct instruction prompting provided strong flexibility
and ease of specification, allowing developers to quickly
express desired changes (Q3). Many participants found direct
instruction prompting “intuitive and quicker” (P8), especially
for straightforward edits. As P1 noted, “I can directly write my
command [...] and I'm more confident the modifications will
align with my intentions, since it’s all my own input.” This
flexibility allowed developers to specify changes rapidly with-
out relying on generated summaries (P1, P2, P7, P12, P14).
Participants rated direct instruction prompting higher in “ease
of specification” (Fig. 4 Q3, 6.0 > 5.0, p = 0.0258 < 0.05).

However, this came with trade-offs, as developers acknowl-
edged that direct instructions were more “prone to errors” (P1)
and could result in unintended modifications (P1, P8, P9). As
P9 cautioned, “if the model misunderstands my intent, it might
touch unrelated parts of the code.”

Summary-mediated prompting provided accurate tech-
nical vocabulary, helping developers express changes more
precisely. Using correct terminology can be challenging,
especially for novice developers [37], [38]. LLM-generated
summaries “use more accurate terminology, and then I can
reuse those words” (P6), potentially reducing the effort of
formulating instructions. As shown in Fig. 5, terms like
activation and dense layer reflect domain knowledge
that may not be easily recalled, especially by those less
familiar with specific APIs or syntax (P6, P9, P13).

Editing summaries reduced typing effort by letting
developers tweak existing text rather than writing prompts
from scratch. Participants found this approach more natu-
ral and less effortful (P2, P3, P4, P6, P10, P12, P13). P3
shared, “I prefer to [...] tweak the sentence directly, rather
than inventing a full prompt from scratch.”, as illustrated
in Fig. 5. Fig. 6(a) shows that summary-mediated prompts



required fewer keystrokes on average, measured by Leven-
shtein distance'® [70] (82.2 < 89.7), though not significantly
(p = 0.2248). However, this benefit depended on the usability
of the generated summaries (see Section IV-C).
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Fig. 6. Comparison of interaction metrics. We did not observe a statistically
significant difference.

Summaries served as scaffolds for composing compre-
hensive prompts, helping developers capture and express
intended changes (Q2) (P3, P4, P8, P10, P11, P13). Partici-
pants rated summary-mediated prompting higher for support-
ing intent scaffolding (Fig. 4 Q2, 5.0 > 3.0, p = 0.015). P8
noted that, compared to direct instruction, editing the summary
helped “preserve the semantic integrity of these encapsulated
[function] units.” P11 also shared, “Using the summary as a
mental checklist seemed like a good idea [...] to cover more
complex modifications.” Even when the original sentence was
hard to modify directly, some participants preferred to leave it
unchanged and add new sentences to extend its meaning (P3,
P4, P6, P9, P10). This echoes prior findings that users build
on existing utterances to guide system behavior [13].

Summary-mediated prompting helped developers con-
trol unchanged parts of the code. While Q5 in Fig. 4
showed no significant difference in perceived control between
prompting techniques (6.0 > 5.0, p = 0.893), interviews
revealed differing interpretations of “control”: some focused
on flexibility and speed, others on stability and scope. As
illustrated in Fig. 5, summary-mediated prompting was helpful
for constraining edits to intended areas (green/red text) and
avoiding unintended changes (gray text). As P4 explained,
“If I change something small while keeping the rest [of
the summary] the same, it helps constrain the LLM from
modifying unintended areas.” P9 added that summaries “retain
an overview of the full code, including untouched parts, which
gives me a stronger sense of safety.” This scoped control was
especially valuable in complex tasks where developers needed
to preserve existing semantics while making targeted changes.

10 evenshtein distance measures the number of character-level insertions,
deletions, or substitutions needed to transform the original summary (or an
empty string for direct prompting) into the final prompt.

Editing summaries forced deeper comprehension of both
existing code and intended modifications. Participants noted
that reading and editing summaries required effort but led to
stronger comprehension before making modifications (P2, P3,
P9, P12). P3 admitted, “Reading the summary takes time, [...]
but I prefer to understand every line to modify with confi-
dence.” This enforced comprehension clarified their intentions
and improved control. As P2 reflected, “I feel a much better
sense of control because I have to fully comprehend to modify
the code.” While summary-mediated prompting demanded
more reading, it encouraged deliberate and accurate edits.

3) Developers Balanced Quick Execution and Semantic
Understanding When Validating LLM Modification Output:
Developers used two primary strategies: executing the code
for immediate feedback or examining its semantics to avoid
hidden issues, consistent with prior observations [71].

Many prioritized quick execution to assess output cor-
rectness (P1, P4, P7, P9, P10, P11, P12, P13, P14, P15). P12
said, “After I get the code, I just accept it and run it, then do
my own debugging session.” This strategy was common when
time was limited and participants trusted the LLM (P7).

However, developers recognized that runtime checks
alone could miss hidden errors [72], leading them to
prioritize semantic understanding. P14 warned, “GPT adds
or omits elements that you actually need, and these might not
be immediately noticeable in the execution.” P3 believed that
early comprehension reduces future debugging costs, noting,
“If I don’t understand the modified code and just accept it, the
risk increases as the project grows.” For long-term reliability,
participants stressed the need to understand the modified code.
As P4 explained, summary-mediated prompting process forced
them to “understand what the code is actually doing.”

These strategies were not chosen arbitrarily; developers’
underlying goals, such as urgency, maintainability, or learning,
shaped how they validated LLM outputs and, in turn, which
prompting techniques they used. See Section IV-B1 for details.
-

Key findings: Developers followed an iterative workflow: )
with the help of summaries, they first understood the
existing code and progressively localized the modification
point, then validated outputs through execution or seman-
tic reasoning. When specifying changes, they balanced
two prompting strategies: direct instruction prompting,
valued for its flexibility and ease of specification, and
summary-mediated prompting, which supported accurate
terminology, contextual completeness, and control over
unchanged code. Though summary-mediated prompts
required more reading, they reduced typing effort and

encouraged deeper comprehension.
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B. Factors Shaping Prompting Strategy Choices

Developers’ prompting choices were shaped by multiple
factors, which we categorize into two groups: (1) intentional
factors, reflecting developers’ underlying goals and motiva-
tions, and (2) situational factors, arising from the specific
characteristics of the task and environment. We additionally



draw on insights from professional developers to examine how
these factors manifest in industrial contexts.

1) Intentional Factors: Intentional factors reflect develop-
ers’ personal goals, shaping not only their prompting choices
but also how they validated LLM-generated modifications.

Task Urgency. Urgent tasks led developers to prefer di-
rect instruction prompting for its speed. Under time pressure
or in one-off scenarios, developers prioritized fast completion
over deep code comprehension, a pattern consistent with
prior work on decision-making under time pressure [73]. As
P1 put it, “I just wanted to ensure the code works.” P8
similarly noted that in urgent situations with familiar code,
they would “skip the comprehension and focus on whether
the execution is correct.” Direct instruction prompting enabled
quick specification and execution-based validation, avoiding
the overhead of reading or editing summaries.

Codebase Maintenance. Developers preferred summary-
mediated prompting to ensure code quality in support
of long-term maintenance interests. When working on per-
sonal or maintainable projects, developers prioritized under-
standing and control over changes. P13 emphasized, “If it’s
my own project that requires long-term management, then
a complete understanding is necessary.” Summary-mediated
prompting enforced deeper comprehension, enabling safer
changes aligned with long-term maintenance interests, an
essential concern for code quality and modifiability [74], [75].

Learning Goals. When aiming to learn, developers used
summary-mediated prompting to build understanding. De-
velopers often treat unfamiliar tasks as learning opportunities
and rely on summaries to explore code logic. P3 shared that
summaries helped them “learn something new in just a few
seconds,” while P7 noted that in real projects, they “would
take the time to learn and analyze the generated code more
carefully.” Summary-mediated prompting supported learning
by encouraging deeper understanding, aligning with concerns
that effective GenAl use requires active cognitive effort to
prevent shallow comprehension and reasoning offloading [76].

Bug Avoidance. To avoid hidden bugs, developers fa-
vored summary-mediated prompting for early semantic
validation. Participants aiming to avoid subtle errors were
more cautious. As P14 warned, “A small trick added by GPT
can lead to a bug that is only discovered later.” P3 further
explained, “Debugging later may cost more than checking
summaries early on.” P7 echoed this concern, “When new
errors appear, I have to go back, scrutinize my code, and debug
it again, which can sometimes take longer.”” By fostering early
comprehension of code changes, summary-mediated prompt-
ing helped developers catch issues before they propagated.

2) Situational Factors: Beyond personal goals, task-related
factors also shaped developers’ prompting choices, influencing
how they balanced efficiency and comprehension.

Code Familiarity. Familiarity with the codebase en-
couraged developers to favor direct instruction prompt-
ing. When familiar with the code, developers often skipped
summaries and used direct instructions to specify changes
efficiently because “I knew exactly which part of the code-

base I wanted to modify” (P5). In contrast, unfamiliar code
prompted greater use of summary-mediated prompting to
support understanding before edits (PS5, P6, PS8, P9, P10,
P11, P12, P13), consistent with findings that comprehension
strategies depend on prior experience and familiarity [77],
[78]. Spearman correlation analysis supports this trend, though
correlations were modest. Developers with higher self-reported
technical familiarity retrieved fewer summaries (p = —0.15),
made fewer LLM-assisted modifications (p = —0.12), se-
lected slightly larger code spans (p = 0.06), and used direct
instruction prompts more frequently (p = 0.05). They also
reported lower cognitive load, with mental demand negatively
correlated (p = —0.26, p = 0.084 < 0.10). Other NASA-
TLX dimensions (e.g., physical, temporal) and perceived per-
formance followed similar trends. These patterns suggest that
code familiarity reduces both reliance on external scaffolding
and the perceived effort of LLM-assisted code modification.

Task Difficulty. Complex tasks lead developers toward
using summary-mediated prompting to build initial com-
prehension. For simple, well-understood tasks, developers
wrote direct instruction prompts “because I trust the LLM can
actually solve it” (P1, P2, P8). However, as task complexity
increased, developers more often started with summaries to
understand code structure and clarify requirements (P1, P2,
PS5, PS, P9, P12, P13, P14), reflecting the need for deeper
comprehension under higher cognitive demand [77].

Edit Scope. Smaller edit scopes favored summary-
mediated prompting for control; larger scopes favored
direct instruction for flexibility. For small edits, developers
valued the control summaries provided (P2). In contrast,
broader changes led them to prefer direct instruction to avoid
the overhead of reading or editing extensive summaries (P1,
P2). This trend appears in Fig. 6(b), where direct instruction
prompts were linked to slightly longer code spans (386.0 >
300.0), though the difference was not statistically significant.

Intention Clarity. Clear goals led developers to prefer di-
rect instruction prompting. When developers knew what they
wanted to change, they expressed it directly and efficiently. As
P11 noted, “If I have a clear goal, I would go direct because
I can just describe it, highlight the part, and tell it what to
do.” In contrast, when intentions were vague, developers used
summaries to help refine and clarify their objectives.

3) Industrial Context: The complexity and collaborative
nature of industrial codebases increased developers’ need
for comprehensive understanding. Industrial projects span
large, interdependent modules where developers focus on
specific features while relying on shared infrastructure and
APIs [78]. Developers “first need to understand how others’
components work,” (P8) and “ensure that my Al modifica-
tions don’t break existing functionality” (P9). They frequently
worked with unfamiliar code written by teammates, requiring
extra effort to understand dependencies and integration points
(P10). These complexities led developers to favor summaries
for building broader system understanding (P8, P9, P11, P13),
while also highlighting the importance of summary quality.

The absence of LLM knowledge about internal code




and high responsibility drove developers to write more
detailed prompts and emphasize careful validation. LLMs
lacked familiarity with domain-specific code and internal
infrastructure, making effective prompting more challenging.
As P13 noted, “Unlike public packages, LLMs don’t have
this knowledge.” Developers compensated by crafting more
detailed prompts and manually verifying outputs to ensure
correctness. Accountability pressures reinforced this caution,
“The problems that arise in the industry will ultimately be
traced back to the owner of the pull request” (P13).

e N
Key findings: Developers’ prompting choices were

shaped by intentional factors. Task urgency favored direct
instruction prompting for its speed and flexibility, while
goals such as maintainability, learning, and bug avoidance
led developers to prefer summary-mediated prompting
to support deeper understanding and control. Situational
factors further shaped strategy selection: developers pre-
ferred direct prompting when tasks were familiar, simple,
broad in scope, or clearly defined, and turned to sum-
maries when facing unfamiliar, complex, or ambiguous
scenarios. Finally, working with industrial codebases
amplified the need for understanding and validation due
to large interdependent systems, collaborative workflows,
and LLMs’ limited knowledge of internal infrastructure.

&

C. Usability Considerations and Design Opportunities

In this section, we examine developers’ experiences with
the usability of summary-mediated prompting and outline
opportunities for design improvement.

1) Granularity and Goal Alignment Shape the Usability
of Summaries: Usability depends on summary granularity
and alignment with developers’ modification goals (P4, PS5,
P6, P15). Participants noted that overly high-level summaries
made it difficult to locate precise edit points. As P1 remarked,
“It’s sometimes challenging to determine where to insert or
modify my changes [into the summary].” P14 similarly wanted
summaries “divided into smaller parts, detailing what specific
lines do.” Conversely, overly fine-grained summaries risked
fragmented edits. P6 warned, “If A appears multiple times,
and you only edit part of it, leftover fragments may remain,’
highlighting the need to balance abstraction and detail to
support targeted edits without introducing inconsistencies.

When summaries exactly covered the relevant code and
aligned well with developers’ goals, participants could make
localized edits by simply modifying existing sentences (see
Fig. 5). Otherwise, they had to append entire new sentences
(P3) or fall back to direct prompting for efficiency (P12).

2) Summary-Mediated Prompting Needs Improved Struc-
ture, Granularity, Traceability, and Consistency: Developers
suggested ways to improve the usability of summary-mediated
prompting and better align it with their workflows.

Structured formats could better reflect code organization
and improve readability. Participants preferred structured
outlines or bullet points over free-form text to improve read-
ability and reduce cognitive effort (P6, P8, P9, P10, P11).

As P8 noted, “When the summary is formatted like 1, 2, 3,
it becomes easier to read and understand.” P9 added that
summaries structured by module or function would make
writing prompts “feel like filling in the blanks.”

Summaries at different granularities were seen as essen-
tial for balancing efficiency and thoroughness. Participants
suggested summaries with adjustable levels of detail, allowing
them to start simple and progressively expand as needed (P35,
P6, P14). PS5 envisioned beginning with a concise version
and “having a way to expand the summary to include more
details.” This flexibility would help developers dynamically
balance brevity and depth across tasks. It also aligns with ab-
straction gradient in Cognitive Dimensions of Notations [79],
as developers benefit from engaging with representations at
varying levels of abstraction depending on their goals.

Developers emphasized improving traceability between
summaries and code to support comprehension. Partici-
pants proposed visualizing mappings between summary sen-
tences and corresponding code segments to accelerate under-
standing (P1, P7). P1 suggested, “If I hover over a sentence
in the summary, it could show me which part of the code it
corresponds to.” P13 further recommended highlighting sum-
mary portions that require modification to guide developers’
attention. These suggestions exemplify closeness of mapping
and visibility dimensions [79]: making summary—code links
explicit helps developers locate relevant context and reduce
the mental effort of bridging representations.

Consistency in summary generation was critical to sup-
port iterative modifications. Participants expressed confusion
about variability in LLM summaries across iterations. As P4
noted, “Each time the summary is generated, the content
is different,” which complicates iterative editing, a common
workflow in LLM-assisted programming. Inconsistent outputs
disrupted developers’ expectations and made it harder to
identify what changed and what remained stable, undermining
both consistency and the role expressiveness of generated
summaries [79]. Maintaining consistent summaries that only
reflect the modified parts, just like the edited summary in Fig.
5, would help preserve developers’ mental models over time.

[ Key findings: Developers emphasized that the usability )

of summary-mediated prompting hinged on both granu-
larity and alignment with modification goals. Summaries
that were too high-level obscured edit locations, while
overly fine-grained ones introduced inconsistencies. To
address these issues, participants suggested concrete im-
provements: adopting structured formats to reflect code
organization, supporting adjustable levels of detail, en-
abling visual mappings between summaries and code, and
maintaining output consistency across iterations.

V. THREATS TO VALIDITY

Our study faces several validity threats. First, the tasks were
lightweight to fit within the time constraints of a lab study [80].
Although they span diverse domains and modification types,
they do not fully reflect the complexity, scale, and ambiguity of



real-world programming. This tradeoff between experimental
control and ecological realism is well-documented in program-
mer user studies [81], [82].

Second, to focus on prompting strategies rather than bug
discovery, we provided explicit modification requirements.
While this improved task consistency, it may have affected
natural prompting behavior, as participants responded to given
goals instead of identifying changes themselves. To reduce
this effect, we made the instructions intentionally indirect
and prohibited copy-pasting from the instruction document to
encourage more active engagement. We also asked participants
to avoid manual edits and use prompting whenever possible.
These constraints, while necessary for isolating prompting
behaviors, may have led participants to write prompts in cases
where they would typically make direct edits [83].

Third, differences in the development environment may
have influenced participants’ behavior. Some were more famil-
iar with macOS and VSCode, while the study used JetBrains
IDE on a Windows machine, potentially increasing cognitive
load. Running the study via Zoom also introduced a slight
screen delay, which may have affected navigation and typing.
These factors likely did not affect prompting strategies but may
have introduced minor inefficiencies during task execution.

Finally, while our prototype was designed to resemble real-
world LLM-assisted coding tools (Section III-C3), its interface
choices (e.g., selection-based prompting) may not reflect the
full range of interactions found in Al-powered IDEs. In partic-
ular, summary-mediated prompting depends on the capabilities
of the underlying LLM, which may shape how developers
perceive and engage with generated summaries. Additionally,
we relied on self-reported data (e.g., interviews and usability
ratings), which are inherently subjective. To mitigate this, we
triangulated findings with interaction logs and observations.

VI. DISCUSSION
A. Cognitive Burden of Prompting for Code Modification

Prompting for code modification is cognitively demanding,
as developers must not only understand the existing code
but also communicate their intended changes with clarity
and precision. While code summaries offer partial support by
facilitating comprehension and providing a structured scaffold,
many challenges persist. Developer intentions are often vague
or evolving (P7, P10, P13), and relevant context, such as
call graphs or dependency structures, is difficult to express
precisely in natural language (P9, P15). Although recent vibe
coding tools aim to reduce prompting effort by retrieving
related code and diagnostic signals, such as linter warnings
and console outputs, participants in our study identified a
key limitation: LLMs lack visibility into runtime program
behavior. Developers found it difficult to describe issues such
as unintended UI behavior (P8) or tensor shape mismatches
(P14), which only emerge during execution and are hard to
convey through prompts. These limitations reflect a persistent
gap between what developers observe and what LLMs can
interpret, highlighting the need for interaction methods that
more effectively capture runtime feedback and evolving intent.

B. Comprehension Challenges in Vibe Coding Workflows

After committing prompts, developers must comprehend
the resulting edits. This is particularly challenging in vibe
coding, where LLMs generate or modify large amounts of
code in one step, often across multiple files, leaving developers
overwhelmed and unsure of what changed. Tools like Bolt!!
exemplify this trend, aiming to support low- or no-code devel-
opment through conversational prompts and runtime previews.
While many developers appreciated the efficiency, our findings
indicate that comprehension remains essential, particularly for
those prioritizing maintainability, learning, or bug avoidance.
Several participants preferred incremental updates for greater
control (P10) and expressed low trust in large or cross-file
modifications (P3, PS5, P7, P8, P13), highlighting the difficulty
of maintaining trust and oversight in current vibe coding
tools. Basic code diffs and chatbot-style explanations may
be insufficient for understanding and validating large-scale
LLM edits, particularly for end users with limited technical
background. Future studies should examine this beyond small-
snippet completions (e.g., Copilot [2]) and across different
user groups. Our findings suggest that structured summaries
and code—summary mappings can scaffold comprehension and
align edits with developer goals. Future work should also
explore integrating traditional techniques, such as automated
testing, to enhance trust in multi-step modifications.

C. Natural Language Programming in the LLM Era

Natural language programming aims to let people express
ideas “in the same way they think about them” [84], offering a
more intuitive bridge between mental intent and computational
logic. While early advocates saw it as a path to democratizing
programming [85], critics argued that natural language, with
its inherent ambiguity, lacks the precision required for instruct-
ing machines [86]. Modern LLMs represent a shift: rather than
replacing programming languages, they can interpret vague
or underspecified intent, positioning natural language as an
interactive layer between human reasoning and formal code.
Our study shows that treating summaries as a medium for
intent scaffolding reveals several key usability factors. Further
research should explore the broader roles and design spaces
of natural language across diverse programming contexts.

VII. CONCLUSION

This study examined how developers construct prompts for
LLM-assisted code modification, comparing direct instruction
and summary-mediated prompting. Through a mixed-methods
study with 15 developers across diverse programming tasks,
we characterized their prompting workflows and decision-
making patterns. Building on these findings, future work
should explore interactive systems that better scaffold com-
prehension and control through code summaries designed
for structural clarity, improved traceability, and adjustable
granularity. In addition, longitudinal deployment studies are
needed to examine how prompting strategies evolve over time
and integrate into real-world development workflows at scale.

https://bolt.new/



DATA AND CODE AVAILABILITY

To support transparency and reproducibility, we provide
a replication package with the codebook, coded interview
segments, interaction logs, questionnaire responses, analysis
scripts, study protocol, task descriptions, and source code of
PASTA, available at: https://github.com/ND-SaNDwichLLAB/
direct-vs-summary-study.
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TABLE 1
SUMMARY OF PARTICIPANT DEMOGRAPHICS AND TECHNICAL BACKGROUND.
D \ Gender  Age Role Experience \ Deep Learning  Data Vis  Web Dev \ TensorFlow D3.js Chrome Ext
P1 Male 27 Graduate Student 8 years Yes Yes Yes Proficient Proficient Proficient
P2 Male 22 Graduate Student 5 years Yes Yes Yes Unfamiliar Never Never
P3 Male 24 Graduate Student 6 years Yes Yes Yes Never Never Never
P4 Male 22 Graduate Student 5 years Yes Yes Yes Unfamiliar ~ Unfamiliar ~ Unfamiliar
P5 Female 27 Graduate Student 10 years Yes Yes Yes Unfamiliar ~ Unfamiliar Never
P6 | Female 23 Graduate Student 6 years Yes Yes Yes Unfamiliar Never Proficient
P7 Male 27 Graduate Student 7 years Yes Yes Yes Never Never Unfamiliar
P8 Male 25 Professional Developer 6 years No Yes Yes Never Never Proficient
P9 Male 24 Professional Developer 7 years No Yes Yes Unfamiliar Never Never
P10 Male 22 Professional Developer 6 years Yes Yes Yes Proficient Unfamiliar Never
P11 Male 28 Professional Developer 8 years Yes Yes No Proficient Never Unfamiliar
P12 | Female 27 Graduate Student 5 years Yes Yes Yes Unfamiliar Never Unfamiliar
P13 Male 30 Professional Developer 12 years Yes Yes Yes Unfamiliar ~ Unfamiliar ~ Unfamiliar
P14 | Female 22 Graduate Student 5 years Yes No Yes Unfamiliar Never Unfamiliar
P15 | Female 27 Graduate Student 8 years Yes Yes Yes Unfamiliar ~ Unfamiliar ~ Unfamiliar

* Data Vis = Data Visualization; Web Dev = Web Development; Chrome Ext = Chrome Extension Development.
 Deep Learning, Data Vis, and Web Dev indicate whether the participant had prior experience in each domain.

¥ TensorFlow, D3.js, and Chrome Ext indicate their self-rated proficiency levels.



