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Abstract—We present PASTA, a JetBrains IDE plugin that
supports LLM-assisted code modification through two prompting
techniques: (1) Direct Instruction Prompting, where develop-
ers describe changes explicitly in free-form language, and (2)
Summary-Mediated Prompting, where changes are made by edit-
ing generated summaries of the code. PASTA enables structure-
grounded prompting through editable summaries, helping devel-
opers specify intent, comprehend code, and control modifications,
addressing key challenges in LLM-assisted programming. This
demo aims to provoke discussion around new interaction repre-
sentations for code editing with LLMs, and invites the VL/HCC
community to engage with hands-on scenarios that bridge natural
language, program structure, and developer intent.

Index Terms—code modification, AI-assisted programming,
prompting strategies, summary-mediated interaction

I. INTRODUCTION

Large language models (LLMs) are widely used for code
modification, enabling developers to edit existing code using
natural language prompts [1]–[5]. However, crafting effec-
tive prompts remains challenging due to the inherent open-
endedness of natural language, uncertainties in LLM predic-
tions, and the often vague or evolving nature of developer
intentions [6]–[8].

A promising approach to easing prompt construction is to
scaffold it through editable natural language summaries of
existing code, which serve as intermediate representations [9]–
[11]. To explore this idea, we designed PASTA1, a system
that supports two prompting techniques for LLM-assisted code
modification in general programming languages. As illustrated
in Fig. 1, these techniques are:

• Direct Instruction Prompting: Freely writing natural
language instructions to describe desired changes.

• Summary-Mediated Prompting: Editing a natural lan-
guage summary of existing code to specify new behavior.

PASTA is a study-enabling system prototype developed for
our full research paper2. It is implemented as a plugin com-
patible with all JetBrains IDEs (e.g., PyCharm, WebStorm).
We will demonstrate PASTA live on Python and JavaScript
tasks within JetBrains IDEs and invite attendees to explore
it hands-on, reflecting on design opportunities for future AI-
assisted development tools. In addition, we will present a
poster showcasing our work on leveraging natural language
representations for LLM-based programming.

1Prompt-Assisted Software TrAnsformation
2Tang et al., Exploring Direct Instruction and Summary-Mediated Prompt-

ing in LLM-Assisted Code Modification, accepted at VL/HCC 2025.

II. PASTA SYSTEM

The design of PASTA draws on modern LLM coding work-
flows (e.g., Cursor3, Windsurf4), adopting a selection-based
prompting interface within the IDE to reflect real-world de-
velopment practices and integrating full-file context to support
code understanding and generation. PASTA is well-documented
and open-sourced at https://github.com/TTangNingzhi/PASTA
to support reproducibility.

A. Interface

Fig. 2 shows the interface of PASTA. Developers begin by
selecting a region of code in the editor using the mouse (left
panel), then specify their intended modification using one of
two prompting methods (right panel).

In summary-mediated prompting, clicking Retrieve Sum-
mary generates a 1-3 sentence natural language description
of the selected code. The summary adapts to the length and
complexity of the code. The generated summary appears in
the top text field and can be freely edited to express the
intended change. Developers can click Diff Summaries
to highlight insertions and deletions, aiding summary
revision. In direct instruction prompting, developers write a
natural language command in the bottom text field to specify
the desired modification directly.

Clicking Commit Prompt in either mode submits the
selected code, the file context, and either the edited summary
or the free-form instruction to the LLM. The returned code
is shown in a diff view with line- and token-level highlights,
enabling developers to inspect, validate, and selectively accept
changes. A loading indicator signals that the LLM is process-
ing the prompt, providing users with timely visual feedback.

B. Implementation

PASTA is implemented as a JetBrains IDE plugin using the
official IntelliJ SDK5. The interface is integrated as a tool
window panel, with functional buttons implemented via the
AnAction interface. The summary diff feature is supported
by the Java Diff Utils library6, while code diffing leverages
the default diff package provided by the SDK. LLM-powered
functionality is built on OpenAI’s GPT-4o7 chat completions

3https://cursor.com/
4https://windsurf.com/
5https://plugins.jetbrains.com/docs/intellij/welcome.html
6https://java-diff-utils.github.io/java-diff-utils/
7https://openai.com/index/hello-gpt-4o/
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Fig. 1. An illustrative example of direct instruction (dashed arrows) and summary-mediated prompting (solid arrows) for LLM-assisted code modification.
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Fig. 2. Interface of PASTA, integrated into JetBrains IDEs (e.g., PyCharm, WebStorm).

API. To improve in-context learning and ensure output consis-
tency, we include a set of few-shot examples in each prompt.
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