
PASTA: Direct Instruction and Summary-Mediated
Prompting in LLM-Assisted Code Modification

Ningzhi Tang∗, Emory Smith∗, Yu Huang†, Collin McMillan∗, Toby Jia-Jun Li∗
∗{ntang, esmith36, cmc, toby.j.li}@nd.edu, †yu.huang@vanderbilt.edu

∗University of Notre Dame, Notre Dame, IN, USA †Vanderbilt University, Nashville, TN, USA

Abstract—We present PASTA, a JetBrains IDE plugin that
supports LLM-assisted code modification through two prompting
techniques: (1) Direct Instruction Prompting, where develop-
ers describe changes explicitly in free-form language, and (2)
Summary-Mediated Prompting, where changes are made by edit-
ing generated summaries of the code. PASTA enables structure-
grounded prompting through editable summaries, helping devel-
opers specify intent, comprehend code, and control modifications,
addressing key challenges in LLM-assisted programming. This
demo aims to provoke discussion around new interaction repre-
sentations for code editing with LLMs, and invites the VL/HCC
community to engage with hands-on scenarios that bridge natural
language, program structure, and developer intent.

Index Terms—code modification, AI-assisted programming,
prompting strategies, summary-mediated interaction

I. INTRODUCTION

Large language models (LLMs) are widely used for code
modification, enabling developers to edit existing code using
natural language prompts [1]–[5]. However, crafting effec-
tive prompts remains challenging due to the inherent open-
endedness of natural language, uncertainties in LLM predic-
tions, and the often vague or evolving nature of developer
intentions [6]–[8].

A promising approach to easing prompt construction is to
scaffold it through editable natural language summaries of
existing code, which serve as intermediate representations [9]–
[11]. To explore this idea, we designed PASTA1, a system
that supports two prompting techniques for LLM-assisted code
modification in general programming languages. As illustrated
in Fig. 1, these techniques are:

• Direct Instruction Prompting: Freely writing natural
language instructions to describe desired changes.

• Summary-Mediated Prompting: Editing a natural lan-
guage summary of existing code to specify new behavior.

PASTA is a study-enabling system prototype developed for
our full research paper2. It is implemented as a plugin com-
patible with all JetBrains IDEs (e.g., PyCharm, WebStorm).
We will demonstrate PASTA live on Python and JavaScript
tasks within JetBrains IDEs and invite attendees to explore
it hands-on, reflecting on design opportunities for future AI-
assisted development tools. In addition, we will present a
poster showcasing our work on leveraging natural language
representations for LLM-based programming.

1Prompt-Assisted Software TrAnsformation
2Tang et al., Exploring Direct Instruction and Summary-Mediated Prompt-

ing in LLM-Assisted Code Modification, accepted at VL/HCC 2025.

II. PASTA SYSTEM

The design of PASTA draws on modern LLM coding work-
flows (e.g., Cursor3, Windsurf4), adopting a selection-based
prompting interface within the IDE to reflect real-world de-
velopment practices and integrating full-file context to support
code understanding and generation. PASTA is well-documented
and open-sourced at https://github.com/TTangNingzhi/PASTA
to support reproducibility.

A. Interface

Fig. 2 shows the interface of PASTA. Developers begin by
selecting a region of code in the editor using the mouse (left
panel), then specify their intended modification using one of
two prompting methods (right panel).

In summary-mediated prompting, clicking Retrieve Sum-
mary generates a 1-3 sentence natural language description
of the selected code. The summary adapts to the length and
complexity of the code. The generated summary appears in
the top text field and can be freely edited to express the
intended change. Developers can click Diff Summaries
to highlight insertions and deletions, aiding summary
revision. In direct instruction prompting, developers write a
natural language command in the bottom text field to specify
the desired modification directly.

Clicking Commit Prompt in either mode submits the
selected code, the file context, and either the edited summary
or the free-form instruction to the LLM. The returned code
is shown in a diff view with line- and token-level highlights,
enabling developers to inspect, validate, and selectively accept
changes. A loading indicator signals that the LLM is process-
ing the prompt, providing users with timely visual feedback.

B. Implementation

PASTA is implemented as a JetBrains IDE plugin using the
official IntelliJ SDK5. The interface is integrated as a tool
window panel, with functional buttons implemented via the
AnAction interface. The summary diff feature is supported
by the Java Diff Utils library6, while code diffing leverages
the default diff package provided by the SDK. LLM-powered
functionality is built on OpenAI’s GPT-4o7 chat completions

3https://cursor.com/
4https://windsurf.com/
5https://plugins.jetbrains.com/docs/intellij/welcome.html
6https://java-diff-utils.github.io/java-diff-utils/
7https://openai.com/index/hello-gpt-4o/

- def
 def

for in

 return
 return

 (numbers):

+ (numbers):

 total =
 num numbers: 

 total += num

- total 
+ total / (numbers)

sum_numbers
average_numbers

0

len

Direct Instruction Prompt

Modify the sum calculation
to compute the average.

Summary-Mediated Prompt

Calculates the
of the input numbers.

sumaverage

def

for in

 return

 (numbers):

 total =
 num numbers: 

 total += num 
 total 

sum_numbers
0

Fig. 1. An illustrative example of direct instruction (dashed arrows) and summary-mediated prompting (solid arrows) for LLM-assisted code modification.

Select Code

Diff Summaries

Commit Prompt

Retrieve Summary

Fig. 2. Interface of PASTA, integrated into JetBrains IDEs (e.g., PyCharm, WebStorm).

API. To improve in-context learning and ensure output consis-
tency, we include a set of few-shot examples in each prompt.

ACKNOWLEDGMENT

This research was supported in part by an AnalytiXIN
Faculty Fellowship, an NVIDIA Academic Hardware Grant,
a Google Cloud Research Credit Award, a Google Research
Scholar Award, and NSF grants CCF-2211428, CCF-2315887,
and CCF-2100035. Any opinions, findings, or recommenda-
tions expressed here are those of the authors and do not
necessarily reflect the views of the sponsors.

REFERENCES

[1] J. T. Liang, C. Yang, and B. A. Myers, “A large-scale survey on the
usability of ai programming assistants: Successes and challenges,” in
Proceedings of the 46th IEEE/ACM international conference on software
engineering, 2024, pp. 1–13.

[2] N. Tang, M. Chen, Z. Ning, A. Bansal, Y. Huang, C. McMillan, and T. J.-
J. Li, “Developer behaviors in validating and repairing llm-generated
code using ide and eye tracking,” in 2024 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 2024,
pp. 40–46.

[3] L. Zheng, W.-L. Chiang, Y. Sheng, T. Li, S. Zhuang, Z. Wu, Y. Zhuang,
Z. Li, Z. Lin, E. P. Xing et al., “Lmsys-chat-1m: A large-scale real-world
llm conversation dataset,” arXiv preprint arXiv:2309.11998, 2023.

[4] F. Cassano, L. Li, A. Sethi, N. Shinn, A. Brennan-Jones, J. Ginesin,
E. Berman, G. Chakhnashvili, A. Lozhkov, C. J. Anderson et al., “Can
it edit? evaluating the ability of large language models to follow code
editing instructions,” arXiv preprint arXiv:2312.12450, 2023.

[5] N. Tang, “Towards effective validation and integration of llm-generated
code,” in 2024 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 2024, pp. 369–370.

[6] L. Tankelevitch, V. Kewenig, A. Simkute, A. E. Scott, A. Sarkar,
A. Sellen, and S. Rintel, “The metacognitive demands and opportunities
of generative ai,” in Proceedings of the CHI Conference on Human
Factors in Computing Systems, 2024, pp. 1–24.

[7] C. Chen, S. Feng, A. Sharma, and C. Tan, “Machine explanations and
human understanding,” arXiv preprint arXiv:2202.04092, 2022.

[8] J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang, “Why
johnny can’t prompt: how non-ai experts try (and fail) to design llm
prompts,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, 2023, pp. 1–21.

[9] Y. Tian, Z. Zhang, Z. Ning, T. Li, J. K. Kummerfeld, and T. Zhang, “In-
teractive text-to-sql generation via editable step-by-step explanations,”
in Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, 2023, pp. 16 149–16 166.

[10] Y. Tian, J. K. Kummerfeld, T. J.-J. Li, and T. Zhang, “Sqlucid: Ground-
ing natural language database queries with interactive explanations,” in
Proceedings of the 37th Annual ACM Symposium on User Interface
Software and Technology, 2024, pp. 1–20.

[11] M. X. Liu, A. Sarkar, C. Negreanu, B. Zorn, J. Williams, N. Toronto,
and A. D. Gordon, ““what it wants me to say”: Bridging the abstraction
gap between end-user programmers and code-generating large language
models,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, 2023, pp. 1–31.

