
1524 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 5, MAY 2025

Programmer Visual Attention During
Context-Aware Code Summarization

Robert Wallace , Aakash Bansal , Zachary Karas , Graduate Student Member, IEEE,
Ningzhi Tang , Yu Huang , Toby Jia-Jun Li , and Collin McMillan

Abstract—Programmer attention represents the visual focus
of programmers on parts of the source code in pursuit of
programming tasks. The focus of current research in modeling
this programmer attention has been on using mouse cursors,
keystrokes, or eye tracking equipment to map areas in a snip-
pet of code. These approaches have traditionally only mapped
attention for a single method. However, there is a knowledge
gap in the literature because programming tasks such as source
code summarization require programmers to use contextual
knowledge that can only be found in other parts of the project,
not only in a single method. To address this knowledge gap, we
conducted an in-depth human study with 10 Java programmers,
where each programmer generated summaries for 40 methods
from five large Java projects over five one-hour sessions. We
used eye tracking equipment to map the visual attention of
programmers while they wrote the summaries. We also rate the
quality of each summary. We found eye-gaze patterns and metrics
that define common behaviors between programmer attention
during context-aware code summarization. Specifically, we found
that programmers need to read up to 35% fewer words (p< 0.01)
over the whole session, and revisit 13% fewer words (p < 0.03) as
they summarize each method during a session, while maintaining
the quality of summaries. We also found that the amount of
source code a participant looks at correlates with a higher
quality summary, but this trend follows a bell-shaped curve,
such that after a threshold reading more source code leads to a
significant decrease (p< 0.01) in the quality of summaries. We
also gathered insight into the type of methods in the project that
provide the most contextual information for code summarization
based on programmer attention. Specifically, we observed that
programmers spent a majority of their time looking at methods
inside the same class as the target method to be summarized.
Surprisingly, we found that programmers spent significantly less
time looking at methods in the call graph of the target method.

Received 28 May 2024; revised 27 February 2025; accepted 10 March
2025. Date of publication 26 March 2025; date of current version 16 May
2025. This work was supported in part by NSF under Grant CCF-2100035,
Grant CCF-2211428, and Grant CCF-2211429. Recommended for acceptance
by M. Wimmer. (Corresoponding author: Robert Wallace.)

This work involved human participants in its research. Approval of all
ethical and experimental procedures and protocols was granted by Internal
Review Boards of University of Notre Dame under Application No. 22-03-
7128 and Vanderbilt University under No. 220604.

The authors are with the Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556 USA, and also with the
Department of Computer Science, Vanderbilt University, Nashville, TN 37235
USA (e-mail: rwallac1@nd.edu; abansal1@nd.edu; ntang@nd.edu; toby.j.li@
nd.edu; cmc@nd.edu; z.karas@vanderbilt.edu; yu.huang@vanderbilt.edu).

Digital Object Identifier 10.1109/TSE.2025.3554990

We discuss how our empirical observations may aid future studies
towards modeling programmer attention and improving context-
aware automatic source code summarization.

Index Terms—Automatic documentation generation, source
code summarization, neural networks, context-aware models.

I. INTRODUCTION

CODE summarization is the act of writing a natural lan-
guage description for a snippet of source code, such as a

subroutine. These summaries are meant to fill the knowledge
gap between a higher-level understanding of the program that
is necessary to use it, and the lower-level implementation in
the code. The automatic generation of these summaries has
been an important goal for the software engineering research
community for decades. Lately, tools such as GitHub Copi-
lot and OpenAI ChatGPT with automatic code summarization
capabilities are increasingly becoming part of Software Engi-
neering workflows [1]. At the core of these tools are Large
Language Models (LLMs) that learn representations of both the
programming language and natural language in an attempt to fill
the aforementioned knowledge gap. They can be thought of as
translating code into natural language summaries.

However, these summaries do not necessarily reflect real-
world scenario, as they are not “context-aware”. A summary
is context-aware when it considers the context, i.e., other code
in the project related the subroutine either required to run it or
understand it. [2], [3] Although there are several types of con-
text, for the purposes of this study, context is source code from
the project related to the subroutine. Context-aware summaries
are important because a subroutine usually does not exist in a
vacuum; the manner in which a subroutine is used depends on
the context. Therefore project-level information in critical to
writing a context-aware summary. Over the last five years, a few
studies have introduced context to code summarization models,
such as by adding source code from part of the project [4], [5]
or the call-graph [6]. It is cost-prohibitive to feed the entire
project to these language models as a longer input requires more
computational resources. There is a knowledge gap in related
work on how human programmers navigate through the context
in a project to infer the most important information. That is
the core inspiration behind this study. We designed this study
to discover what programmers’ visual attention is during code
summarization and to discover what contextual information

0098-5589 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0006-0377-2059
https://orcid.org/0000-0001-7475-7899
https://orcid.org/0000-0002-5721-8794
https://orcid.org/0000-0002-8555-2351
https://orcid.org/0000-0003-2730-5077
https://orcid.org/0000-0001-7902-7625
https://orcid.org/0009-0005-0887-1083
mailto:rwallac1@nd.edu
mailto:abansal1@nd.edu
mailto:ntang@nd.edu
mailto:toby.j.li@nd.edu
mailto:toby.j.li@nd.edu
mailto:cmc@nd.edu
mailto:z.karas@vanderbilt.edu
mailto:yu.huang@vanderbilt.edu

WALLACE et al.: PROGRAMMER VISUAL ATTENTION DURING CONTEXT-AWARE CODE SUMMARIZATION 1525

they find most important, so that we may use that information
for future studies in automated source code summarization.

The visual attention of a programmer is an important indica-
tion of their mental model when performing programming tasks
[7], [8], [9]. Visual attention strategies refer to the selective
focus humans apply to some parts of the visual stimulus (i.e.,
the code in the case of programmers). This selection of parts
of the code is informed by the mental model of the program-
mer that evolves as they retain more information [10]. These
visual attention strategies can be inferred using eye tracking
data, specifically, gaze patterns of programmers. eye trackers
have been used in fields such as computer vision, psychology,
and medical sciences to create models of human behavior and
mental processes for decades [11], [12], [13]. Although models
of visual attention strategies are interesting on their own, they
can used to learn domain-specific knowledge such as those
programmers use while completing SE tasks.

To that end, recent work in SE towards modeling program-
mer attention has mainly used proxies such as mouse cursor
movements and clicks [14]. Studies to model visual attention
directly using eye trackers have been limited to a small snip-
pet of code [8], [15], [16]. Recently, a few studies have also
proposed approaches for automatic inference of visual attention
[17], [18], [19]. The scope of most of these studies is limited to
one subroutine. We build upon these works to study eye tracking
and visual attention patterns at the project-level. Compared to
those studies, our study design is challenging due to difficulty
controlling a study environment where the participants have
access to the entire project. Analyzing the data at the project
level also poses challenges as not all code in the project is useful
or even executed. However, project-level comprehension is a
real world scenario in which programmers complete SE tasks
such as code summarization. To the best of our knowledge, we
conducted the first comprehensive human study to map these
attention patterns in the context of the project.

In this paper, we present an eye tracking study designed
with the goal of analyzing visual attention strategies of pro-
grammers while they navigate related methods for the task of
source code summarization. We recruited 10 Java programmers,
each tasked with completing five sessions. In each session,
we asked programmers to write context-aware summaries for
8 subroutines of a Java project. Then, we manually rated the
summaries for accuracy, completeness, conciseness, and clarity
using two graders, who are among the authors. These ratings
help us analyze the effect of various programmer gaze patterns
on the quality of summaries. Finally, we categorized all the
code in the project into categories of code context. We then
identified the type of context to which the programmers gave
the highest attention in pursuit of the summarization tasks.
Although knowledge of programmer visual attention strategies
is intellectually interesting, we posit that models of programmer
attention and identification of important parts of context have
practical applications towards improving models for automatic
source code summarization.

We found that: 1) participants looked at fewer words and
revisited words fewer times as they processed more methods for
a given project; 2) the quality of these summaries did not suffer

or decrease with any statistical significance as the participants
processed more tasks; 3) the quality of summaries is related to
the amount of context analyzed by the participants, like a bell-
curve, such that the quality increases as more context is ana-
lyzed by the participants up to a certain threshold and then the
quality decreases; 4) participants spent the most time looking
at class and instance methods, followed by class declarations
and call graphs; 5) the type of context participants focused on–
such as class and instance methods, declarations, the call graph,
or other areas of the project–is generally not affected by the
project, session order, method order, or participant.

We make five contributions in this study:
1) We perform an eye tracking study involving more than

60 hours of participant effort by 10 Java programmers.
Each programmer completed 40 context-aware code sum-
marization tasks.

2) We contribute a novel dataset of 394 context-aware sum-
maries, to be released publicly with this study.

3) We perform a qualitative comparison of the context-aware
summaries, graded by two authors of this paper and
agreed upon by a discussion-based coding methodology,
to be released publicly with this study.

4) We perform a quantitative comparison of eye-gaze pat-
terns and visual attention strategies as the programmers
process more tasks and their correlation with quality of
summaries.

5) We present a quantitative comparison of the varying lev-
els of attention received by different types of context
and make recommendations to distill context for future
automatic source code summarization studies.

II. BACKGROUND AND RELATED WORK

In this section, we provide background on eye tracking stud-
ies in software engineering and discuss related work in context-
aware code summarization.

A. Eye Tracking in Software Engineering

Eye tracking has been used in SE research for nearly two
decades to gain insight into programmer behavior and human
factors in programming [9]. Recent evolution of eye trackers
from expensive and difficult-to-operate lab equipment to simple
monitor-mounted devices usable in development environment
has accelerated their use in SE research [18], [20]. Eye tracking
studies in SE can mainly be divided into three areas of interest:

Code Comprehension is an area of interest that is primar-
ily concerned with the mapping of programmer mental model
during comprehension of a snippet of code or small program.
In 2006, Aschwanden and Crosby [21] presented gaze patterns
of programmers during the comprehension of a small snippet
of code containing a loop and mathematical equations. They
formalized the process of understanding programmer mental
processes using eye tracking during program comprehension.
Also in 2006, Bednarik and Tukiainen [15] introduced a frame-
work for analyzing eye gaze patterns, in particular scanpaths, of
participants tasked with comprehension of two small programs.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

1526 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 5, MAY 2025

They found that the mental model of a programmer is refined
as they progress through the task, marked by a decrease in
attention switching. In 2014, Rodeghero et al. [22] presented
an analysis of gaze patterns of programmers tasked with sum-
marization of source code. They used the findings of that study
to improve automatic source code summarization, showing how
code summarization approaches of the time could be improved
by making them focus on the same things as people do. Abid
et al. [23] replicated and expanded the Rodeghero study [22]
in 2019 with project context using a similar interface, and
showed that allowing the participants to work in a more realistic
environment results in a more generalized understanding of
developer behavior.

Similarly, in 2024, Karas et al. [16] presented and compared
visual attention strategies of programmers for two tasks: reading
of source code summaries for assessment and generating their
own source code summaries. They found that programmers tend
to look at specific words in the method in specific order defined
by the syntactic nature of the code. Their work serves as an
inspiration for this study, however these studies only considered
method-level information. In this study, we focus our analysis
on the project-level information.

UML Diagrams are an area of interest concerned with
understanding how programmers use UML diagrams during
programming tasks. In 2006, Guéhéneuc [24] presented two
case studies on the importance of UML diagrams in program
comprehension by following the gaze patterns of program-
mers presented with a comprehension task. In 2010, Sharif and
Maletic [25] showed that eye gaze patterns of programmers
suggest better program comprehension when presented with
particular UML layouts and clustering patterns. A caveat of
studies on UML diagrams is that the results are specific to the
visualization tools and programmers were not presented source
code or asked to do a programming task [26], [27]. Therefore,
the observations from these studies do not necessarily represent
visual attention during code comprehension.

Code Debugging studies are concerned with mapping pro-
grammer attention and mental model during the task of code
debugging [9], [28]. In 2008, Bednarik and Tukiainen [10]
presented an analysis of gaze patterns of programmers with
varying levels of experience during debugging tasks. They
found that more experienced programmers tend to use context-
switching quicker and more often that novice programmers.
In 2014, Turner et al. [29] presented results of a study per-
formed exclusively with students given two tasks: 1) over-
viewing code to answer questions, and 2) debugging code. They
found that gaze patterns are significantly different between the
two tasks, suggesting eye-patterns of code comprehension are
goal-dependent. In 2020, Sharafi et al. [30] presented a study
that quantifiably indicates that developers generally follow a
three-phase model of finding, learning, and editing. They found
that developers spend more time searching code towards the
beginning of the task, while what they focused on changed over
time as they understood the program context. This is important
because it highlights the need for in-depth studies like ours
that specifically ask the programmer to summarize code using

context, as well as finding out what parts of the code are more
important to the programmer over time.

Our study is most closely related to code comprehension as
we present participants with raw source code and specifically
task them with summarization using context. The novelty of our
study lies with the project-level eye tracking and data analysis.

B. Source Code Summarization

Source code summarization has been a focus of SE research
for a decade and a half. Early work in source code summariza-
tion used Information-Retrieval techniques [31], [32]. Around
2015, these techniques were aided by the addition of contex-
tual information [33], [34]. Around 2017, the advent of neural
networks changed the landscape of automatic source code sum-
marization research [35], [36], but the initial approaches lacked
contextual information.

In 2020, Haque et al. [4] proposed an encoder to represent
a few subroutines from the same file as the target subroutine.
They showed that the addition of a small part of the file im-
proved existing approaches in automatic source code summa-
rization. Then in 2021, Bansal et al. [5] extended upon that
work by introducing a proof-of-concept project encoder that
represents a few files from the project. They showed further
improvement over file context by including more information
but also cautioned against the costs of adding more context.
They selected the files and subroutines in the files randomly
and highlighted the need for a better methodology to narrow
down contextual information.

In 2023, Bansal et al. [6] introduced a Graph Neural Network
(GNN) based encoder to represent the call graph extracted from
the project centered at the target subroutine. Recently, two stud-
ies used human visual attention to improve automatic source
code summarization by using synthesized human attention data
given limited eye tracking data [17], [19]. However, the short
summaries generated by these approaches may not represent
the full potential of contextual information. Therefore, in this
study we ask participants to write longer summaries that include
specific contextual information in them.

Recent studies in automatic source code summarization have
been focused on fine-tuning LLMs [37], [38], [39]. However,
even for these massive models, the size of the input, called a
“context window” is a limitation. Although there are proposed
techniques for increasing the size of these context windows
[40], there is also evidence that simple feeding a large amount of
context to an LLM may not be helpful [41]. Therefore, in this
study we aim to isolate specific areas in the project that pro-
grammers pay the most attention to, and may be used to distill
contextual information for LLMs and any future techniques for
automatic source code summarization.

III. STUDY DESIGN

In this section, we describe the experimental setup for our eye
tracking study including the study setting, research questions,
interface, procedure, dataset, and tools.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

WALLACE et al.: PROGRAMMER VISUAL ATTENTION DURING CONTEXT-AWARE CODE SUMMARIZATION 1527

Fig. 1. A screenshot of our interface. The blue box highlights the summary generated by the participants, while the red box highlights the navigational
window limited to one project. The participant is free to open and read any part of the project.

A. Study Scenario

We design this study to emulate a specific scenario in code
comprehension, specifically context-aware source code summa-
rization. We ask participants to retrospectively write context-
aware descriptions of a target method. We provide participants
access to the entire Java code from the project that contains
the target method. The project is devoid of any documentation,
including header and inline comments (See III-F on details of
the projects). We ask the programmer to read and understand the
target method, as well as the surrounding code in the context,
and to write a three-sentence context-aware summary with the
following instructions:

• The first sentence should explain the purpose of the
method in as simple of terms as possible, in the context
of the whole program.

• The second should describe the more specific functional-
ities and under what circumstances they occur.

• The last sentence should describe why this method is
needed within the context of the overall project.

We ask each programmer to write summaries for 8 methods
per project, found to be the ideal number for 1 hour session
during our pilot studies. We choose 5 projects extracted from
Github for this study, and displayed only the raw Java code. We
ask every programmer to process each project in a separate eye
tracking session. We set up the study in the Eclipse IDE.

B. Research Questions

We answer three research questions:
RQ1: How do gaze patterns change as the participants pro-

gresses from the first method to the last in a session?
RQ2: How does the quality of summaries correlate with the

gaze patterns?
RQ3: What parts of the project context received the highest

attention?

The rationale behind RQ1 is to evaluate how gaze patterns
change as a participant moves from the first method to the last
in a project. As participants investigate more methods and write
descriptions, their knowledge base of the project may increase.
We may be able to isolate specific gaze patterns associated with
an increased knowledge base.

The rationale behind RQ2 is to find gaze patterns that are
characteristics of the quality of summaries that we grade man-
ually. We aim to find the correlation of high-quality summaries
and the observations from RQ1. We also aim to isolate gaze
patterns that may be characteristic of writing what we consider
to be higher-quality summaries.

The rationale behind RQ3 is that some parts of the context
are more important to the task than others. We aim to categorize
the different parts of context that the participants looked at and
identify the type of context on which the participants spent the
longest time fixating. This may help future studies distill parts
of context for automatic source code summarization [37].

C. Interface

We show a screenshot of our study interface in Fig. 1 with
the following notable features:

• We built our interface within the Eclipse IDE, using iTrace
plugin [42] and core [43].

• Study Instructions are in a markdown file named StudyIn-
structions.md, which contains an example of a context-
aware summary.

• For each project, we provide the participant with
project.txt file, which contains 8 tasks. For each task, we
provide the path to the Java file, the name of the method,
the line number, and space for the description.

D. iTrace

We use iTrace suite [43], [44] for our eye tracking study. The
suite includes three tools: 1) iTrace core [45] that manages the

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

1528 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 5, MAY 2025

TABLE I
DESCRIPTION OF JAVA PROJECTS

Name Number of Files Number of Classes Lines of Code Age of Project (years) Domain
Scrimage 122 111 5981 11 Image Editing
MLTK 158 152 18816 2 Machine Learning
OpenAudible 107 80 13379 6 Multimedia
MALLET 619 767 77407 16 NLP
FreeCol 804 889 128049 20 Entertainment

eye tracking, screen recording, keyboard, and mouse recording;
2) iTrace Eclipse plugin [46] that connects to the core and
maps the gaze data to specific elements of the IDE and the text
inside files; 3) iTrace toolkit [42] which is a post-processing
tool to isolate gaze patterns. We use this suite because it can be
used in an IDE and can record eye tracking data over the entire
code project.

E. Study Procedure

We ask each participant to complete five sessions, each with
the following study procedure:

• Before the participant arrives, we launch both the Tobii eye
tracker manager and iTrace core program. We then set up
the session and participant details.

• Next, the study administrator sets up the Eclipse IDE.
First, we connect the iTrace Eclipse plugin to the iTrace
core. Second, we set the project explorer to only show the
project archived by srcML [47] for that session. Then, we
open two files: 1) studyInstructions.md and 2) project.txt,
where project is a placeholder for the name of the Java
project. See Section III-F for details.

• Next, the study administrator seats the participant. We ask
the participant to read the StudyInstructions.md file. These
instructions contain an example of the three-sentence sum-
mary we ask the participants to write. This step is re-
quired for the first session, but the file is always accessible
through the session and for future sessions if the partici-
pant needs a reference.

• Next, we ask the participant to open the project.txt file
that describes the project and contains the location of the
8 Java methods. Each method is a task for the purposes of
this study.

• We ask the participant to perform two calibrations before
starting the first task as recommended by iTrace developers
[45]. First, Tobii eye tracker manager and then the iTrace
core calibration. After calibration, we ask the participant
to start a tracking session on the iTrace core window and
begin the task inside the Eclipse IDE.

• To complete a task, we ask the participant to navigate to
a file and line number and find the method. Then, the
participant is free to explore any number of files in the
project. After the completion of one task, we designed
the text file to remind the participant to stop tracking and
start a new tracking session for the next task. This allows
each task to have its own eye tracking data and screen
recording file.

• The study administrator helps re-calibrate with both
Tobii eye tracker manager and iTrace halfway through the

session, after task 4, and before starting the new tracking
session for task 5. We also prompt re-calibration if the
participant needs a break or leaves the eye tracking room
at any point during the session.

F. Java Projects

We scraped Github for repositories with at least 90% of
the project code base containing Java source code. We also
excluded projects that depend heavily on other projects or code-
bases. Finally we picked the following five projects:

• Scrimage is an immutable, functional, and performant
Java library for manipulation of images. The aim of this li-
brary is to provide a simple and concise way to do common
image operations, such as resizing, filter, and converting
between formats.

• MLTK is a collection of various supervised machine
learning algorithms, which is designed for directly training
models and further development.

• OpenAudible is a cross-platform desktop application for
downloading and managing Audible audiobooks with both
a GUI interface and an organizational library.

• MALLET is a Java-based package for statistical natural
language processing, document classification, clustering,
topic modeling, information extraction, and other machine
learning applications to text.

• FreeCol is a turn-based strategy game based on the old
game Colonization, and similar to Civilization. The ob-
jective of the game is to create an independent nation.

More details about the projects can be found in Table I. Notably,
the projects cover a wide range of project domains, an 18
year age range, and between 5-128k lines of code. For each
project above we chose 8 specific methods. To ensure that the
methods can be described using relevant context, we avoided
trivial methods such as getters, setters, or similar self-evident
functions, while prioritizing methods that are called at least
twice (for multiple direct contextual sources) or perform some
functionality in the project discernible in the context of the
project. The order of methods 2 through 8 is randomized. We do
this to answer RQ1 by minimizing the effect of any one method
on the observations, i.e., a particularly tough or easy method
would not skew the results as it would appear at a different
position for each participant. Method 1 is fixed for each session
to start each participant off with the same baseline.

G. Eye Tracker

The eye tracker used for this study was the Tobii Pro Fusion at
120Hz mounted at the bottom of a Spectre 24-inch 1920x1080

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

WALLACE et al.: PROGRAMMER VISUAL ATTENTION DURING CONTEXT-AWARE CODE SUMMARIZATION 1529

resolution monitor at 60Hz screen refresh rate. The eye tracker
has an accuracy of 0.03◦ and precision of 0.04◦ in optimal
conditions [48]. Note, although all sessions were conducted in
the same lab with the same equipment, we could not ensure
optimal conditions were met for all participants due to factors
such as ambient light, natural light and corrective lenses.

H. Software Versions

We list the software versions we used for our study below to
promote future replication of the study and results: Windows
10 pro 10.0.19045; iTrace core v0.2.0; iTrace Eclipse Plugin
v0.2.0; iTrace Toolkit 0.2.2; Eclipse IDE for Java V2023-06
(4.28.0); OpenJDK 18

I. Participants

We recruited 10 programmers with Java experience to par-
ticipate in our study. We recruited participants by email list,
and we collected informed consent which clearly indicated they
could leave at any time, and were compensated 60 USD per
session. Each participant was required to have at least 1 year of
previous Java development experience. The participants had an
average of 2.8 years of Java development experience and 5 years
of general programming experience. Each participant was com-
pensated at a flat rate of USD 60 per session, with an average
duration of around 1 hour per session. 4 participants identified
as female, and 6 as male. 6 participants identified as non-native
but fluent English speakers, and 4 as native English speakers.
We designed the study to be in-depth to answer RQ1, where
each participant processes multiple methods and projects, so
we did not recruit a high number of participants. In this study
we focus on general findings instead of individual differences.

IV. METHODOLOGY

In this section, we discuss the methodology for analysis of
data after the eye tracking study.

A. Gaze Pattern Metrics

Following the good practices established by similar studies in
the past [49], [50], [51], we calculate and report the statistical
summaries of the following gaze pattern metrics to answer the
three RQs:
Fixation: A fixation is marked by a steady gaze of the human

eye at a particular location in the stimulus, for the duration
of at least 100-200ms, required for the visual system to
process information. It is the most common measure of hu-
man visual attention in eye tracking literature [49]. For this
study, we only compute statistical summaries of fixation
count and duration.

Regression Rate: A regression occurs when a fixation oc-
curs against the current direction of reading, such that
a previously read word may be fixated upon again,
marking an event of re-reading [50]. Higher regressive
rate may indicate higher difficulty in understanding [52].

We calculate regression rate for each method task as the
number of regressive fixations normalized by the number
of total fixations during that task.

Lines of code: We compute and report statistical summaries of
counts, density, time spent, and transition between lines of
code [51] seen by a participant as a measure of programmer
attention.

Methods visited: We compute and report statistical summaries
of counts, time spent, and manually labeled relationships
between methods in the project as a measure of program-
mer attention. The idea is that the methods that linked to
the highest gaze activity, receive more attention from the
programmer.

B. Qualitative Annotation

Two of the authors annotated the quality of summaries gen-
erated by the participants, to assess the effect of changing gaze
patterns on performance, based on four qualities recommended
in related works [53]:

• Accuracy On a scale of 1-5, how accurate is the summary?
(deduct a point for each instance of inaccuracy)

• Completeness On a scale of 1-5, how complete is the
summary? (deduct a point for each instance of missing
important information)

• Conciseness On a scale of 1-5, how concise is the sum-
mary? (deduct a point for each instance of unnecessary
information)

• Clarity On a scale of 1-5, how clear or readable in the
summary? (deduct a point for each instance of lack of
clarity or grammatical incorrectness)

When assigning annotations or “codes” in a qualitative man-
ner, there are two popular approaches to reduce human biases.
The first approach is an agreement-based approach [54], which
relies on a high number of annotators (or graders for the purpose
of this study) to reach a Kappa agreement threshold. However,
that approach does not account for expertise, i.e., a large number
of novices may override an expert. For our study, every grader
would have to be 1) expert in Java documentation, and 2) famil-
iar with the entirety of the project, as we expect our participants
to explore the project while writing summaries. The second
approach is a discussion-based approach, which relies on an
iterative process of discussion for each disagreement. We chose
this approach as recommended by related work for tasks with
a low tolerance for imperfect grading [55], [56]. Both graders
independently graded all summaries, followed by a discussion
phase on each disagreement, until both graders agreed on one
score. To avoid agreement bias, the graders did not know the
participant number or the order in which the summaries were
shown to the participants.

C. Context Categorization

We divide all areas of context in any of the Java projects into
five categories as they relate to the target method:
Class or Instance methods: are the areas of context that fall

within a method in the same class as the target method.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

1530 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 5, MAY 2025

TABLE II
MEAN AND MEDIAN VALUES FOR METRICS WHEN GROUPED BY THE POSITION IN WHICH THE METHOD WAS SEEN

Method Fixation Count Avg. Fixation Duration Regression Rate Lines Visited Methods Visited
Mean Median Mean Median Mean Median Mean Median Mean Median

1 331.61 259 444.39 289 56.65 56.93 50.03 38.5 9.04 5
2 268.54 249.5 480.37 300 53.78 53.48 46.92 45 9.71 6.5
3 302.89 221 441.05 281 55.07 56.94 45.45 38 9.11 7
4 290.46 250.5 484.24 302 56.21 59.21 40.58 34 9.35 8
5 238.77 216 491.90 310.5 52.89 52.39 40.58 36.5 10.08 7
6 202.81 156 458.15 283 51.1 49.67 36.03 32 8.48 6
7 222.44 193 478.40 301.5 51.52 54.78 35.08 31 6.96 7
8 214.69 176 491.89 308 49.85 51.97 40.81 30.5 8.19 6

Class declarations: are the areas of context that fall within the
same class as a target method but not inside a method, such
as object and variable declarations.

Call graph: are the areas of context that fall within a method
in the call graph of the target method, i.e., it is a caller or
callee of the target method.

File context: are the areas of context that fall within the same
Java file as the target method but are not in the same class as
the target method or in the call graph. These may be import
statements, global variable declarations or other private
classes defined in the same Java file.

Project context: are all other areas of context in the project
that are not included in any of the above categories.

We use srcML [47] to automatically identify the type of
source code element – such as conditional or method call – in
each project. iTrace [43] calculates the file, column, and row
data from the eye tracking data, which we use to identify the
source code element the participant was looking at. From this
we use srcML to identify the area of context in which the source
code element is at each point.

V. RESULTS

We report the results for our three RQs in this section. For
perspective, key statistics about the dataset about the dataset
include participants, gazes, and fixations per task:

Participants 10 Fixations (Mean) 263.5
Hours/Participant 6 Fixations (Min) 12
Total Fixations 95924 Fixations (Max) 1726
Total Gazes 143570

A. RQ1: Effect of the Progress Through Tasks

We divide our discussion of the answer to RQ1 into the
following topics: Overall Information, Key Observations, Sta-
tistical Tests, and Interpretation.

Overall Information We found that participants need less
information to complete their context-aware summarization
task as they progress through the tasks. To analyze the change
in gaze patterns during this process, we report the change
in average fixation duration, fixation count, regression rate,
lines visited, and methods visited by the participants. We make

TABLE III
RESULTS OF THE MANN-WHITNEY U STATISTICAL TESTS ON THE

DISTRIBUTIONS PRESENTED IN TABLE II

Gaze Metrics Mann-Whitney U
U1 U2 p-value

Fixation Count 1892.5 1075.5 0.01
Avg. fixation duration 1263 1705 0.18
Regression Rate 1193.5 1774.5 0.02
Lines Visited 1773.5 1194.5 0.08
Methods Visited 1501 1467 0.92

two interesting observations. We found that participants need
less information to complete their context-aware summarization
task as they progress through the tasks. To analyze the change
in gaze patterns during this process, we report the change in
average fixation duration, fixation count, regression rate, lines
visited, and methods visited by the participants.

Key Observations First, we observe a pattern of decreasing
fixation counts. In Table II, we report the statistical summaries
of the count of fixations when grouped by position of the
method, which denotes the position in which the participants
saw and wrote summaries for the method. We observe a 35% de-
crease in the mean number of fixations the participants made on
the last method when compared to the first method processed.
However, with respect to average fixation duration, we did not
observe a significant change. This may be because average time
spent on a fixation may be affected by the participants’ reading
speed.

Second, we also observe a clear trend of decreasing regres-
sion rate. The mean of normalized regression rates for each task
decreased by roughly 13% when compared by method position.
Regressions often occur when information is particularly hard
to understand or needs context from the surrounding words
before it can be understood [57]. This indicates that as the par-
ticipants progressed through the session they did not encounter
word tokens that were hard to comprehend or needed additional
information to understand as frequently as when they started.

Statistical Tests We performed the Mann-Whitney U [58]
test, a non-parametric, non-paired statistical test on the distri-
bution of the values, and report the results in Table III. We chose
this test because our data does not meet the assumptions of a

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

WALLACE et al.: PROGRAMMER VISUAL ATTENTION DURING CONTEXT-AWARE CODE SUMMARIZATION 1531

parametric test, i.e., it is subjective and is not known to follow
Gaussian or Normal distributions. We compared the combined
distribution of the first two methods against the combined dis-
tribution of the last two methods seen by the participants. We
observed that for fixation counts the difference between the
two distributions were statistically significant (p < 0.01). We
also observed statistically significant difference between the
two distributions for regression rate (p= 0.02)

However, with respect to number of lines visited and number
of methods visited, we observe a p-value > 0.05. Therefore, we
cannot reject the null hypothesis for these metrics. There is sta-
tistical likelihood that patterns such as decreasing mean number
of lines visited may not be significant. These observations are
interesting because they indicate that the participants continued
to cover a large amount of the context to write these descriptions
as they processed more methods.

Interpretation Our interpretation of these observations is
that the participants retain more information about the project
from previous task, and thus needed less information to write
summaries as they processed more tasks. Different studies have
shown how programmers skim source code whenever possible,
reading the minimum amount of information they need [59].
As programmers become more familiar with the task, they are
more likely to intuitively know what information they need,
and therefore read fewer details. Our observations support those
findings as we do not see a significant decrease in lines and
methods visited by the participants but fixations and regressions
decrease. Therefore, participants still covered similar amount of
code but seemed to get better at skimming, resulting in lower
frequency of fixations and regression rate.

An alternative explanation might be fatigue or boredom, the
effects of these are marked by decreased thoroughness or de-
creased quality of summaries written. Our observations contra-
dict the former as we did not observe statistically significant
effect on code context coverage in terms of the number of lines
and methods visited. We study the possibility of the latter in the
next section about RQ2.

B. RQ2: Quality of Summaries

To analyze the quality of summaries written by the
participants, we had two graders manually grade each summary
for accuracy, completeness, conciseness, and clarity (see
Section IV-B for details). We make a the following
observations.

First, we observe no significant pattern associated with the
position in which the summary was written. In Table IV, we
report the mean scores for the four quality metrics. We also
report an over score, an average of those 4 metrics calculated
individually for each summary. We also performed the Mann-
Whitney U test between the distributions of the first two meth-
ods and the last two methods in a way consistent with RQ1, with
an observed p≥ 0.9. This observation supports our hypothesis
about RQ1 that a decrease in fixation counts and regression rate
is likely not due to exhaustion, as neither code context coverage
nor quality of summaries was affected by the position in which
the methods were seen.

TABLE IV
AVERAGE QUALITY RATINGS FOR SUMMARIES WHEN GROUPED BY

THE POSITION OF THE METHODS

Method Accurate Complete Concise Clear Overall
1 4.32 3.94 4.42 4.74 4.36
2 4.36 4.10 4.40 4.40 4.32
3 4.46 4.12 4.22 4.64 4.36
4 4.44 4.22 4.28 4.58 4.38
5 4.56 4.26 4.28 4.54 4.41
6 4.45 3.98 4.29 4.63 4.34
7 4.50 4.10 4.13 4.65 4.34
8 4.32 3.98 4.09 4.68 4.27

All 4.43 4.09 4.26 4.61 4.35

Next, we found that with mean= 4.35 and median= 4 on
a scale of 1-5, the summaries were graded to be of high quality.
We observed a higher variance in scores for two of the qualities,
completeness and conciseness, compared to accuracy and clar-
ity. Therefore, we analyze the eye gaze patterns between two
groups, those that received a low score (< 3) for completeness
(n= 44) and conciseness (n= 33), against those that received
a high score (= 5) for completeness (n= 147) and conciseness
(n= 170). Here n denotes the number of summary samples in
each subset. We do not compare groups based on accuracy and
clarity because the low score group size is too small (n < 5).

We observe that the completeness of summaries is correlated
to the code context coverage by the programmer. In Table V,
we report the mean values of each of the five gaze metrics
for each subset. We also report the U1, U2, and p-value for
Mann-Whitney U statistical test. We observe that the summaries
of high completeness correspond to a significantly (p < 0.001)
higher number of fixations, lines visited, and methods visited.
Fig. 3 shows this delta clearly through the blue bars. This sug-
gests that the participants that covered a smaller amount of the
code context, wrote summaries that were missing important in-
formation. Although we observe an increase in mean regression
rate as well, the p-value for regression rate p= 0.051, which
is not statistically significant by conventional standards, but
approaches significance. We do not observe a significant differ-
ence in average fixation duration. This observation supports the
observation in RQ1, and further suggests that average fixation
duration may be dependent on each participant’s reading and
comprehension speed.

On the other hand, the conciseness of summaries is inversely
correlated to the code context coverage by the programmer.
From Table V, we observe that the summaries of high con-
ciseness correspond to a significantly (p < 0.015) lower number
of fixations, lines visited, and methods visited. Fig. 3 shows
this delta more clearly. This suggests that participants included
unnecessary information at a higher rate when they covered an
exceptionally larger part of the code context. As shown in Fig. 3,
we did not observe a significant difference in average fixation
duration or regression rate between the two groups.

Our interpretation of these observations is that there are di-
minishing returns in terms of increasing code context coverage
and improvement in the quality of summaries. We found that
gaze metrics for the summaries that achieved a perfect score
for all four qualities (Overall = 5), tend to fall between the

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

1532 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 5, MAY 2025

TABLE V
GAZE METRICS FOR SUMMARIES GROUPED BY QUALITY SCORES: LOW(<= 3) AND HIGH(= 5) FOR COMPLETENESS AND CONCISENESS. HERE U1, U2,

AND P-VALUE ARE RESULTS OF THE MANN-WHITNEY U STATISTICAL TEST FOR EACH GROUP

Group Fixation Count Regression Rate Avg. fixation duration Lines Visited Methods Visited
Complete Concise Complete Concise Complete Concise Complete Concise Complete Concise

Low(<=3) 181.72 350.38 48.38 55.78 562.08 475.47 29.88 53.62 5.60 11.42
High(=5) 264.23 228.87 54.27 52.55 482.01 516.73 43.25 38.49 9.29 8.14
U1 1,856.00 2,765.00 2,239.00 2,353.00 2,764.00 1,825.00 1,740.50 2,743.50 1,796.00 2,684.00
U2 3,734.00 1,369.00 3,351.00 1,781.00 2,826.00 2,309.00 3,849.50 1,390.50 3,794.00 1,450.00
p-value 0.001 0.006 0.051 0.259 0.915 0.340 0.000 0.008 0.000 0.015

thresholds for high completeness and conciseness. For example,
in terms of lines visited, the summaries with a perfect score have
a mean score of 41 lines, which is between the scores of 43.25
and 38.49 reported in Table V.

In contrast, summaries marked for low completeness have
a lower mean score of 29.88, while summaries marked for
low conciseness have a high mean score of 53.62, indicating
that reading more context does not always result in a better
summary. Rodeghero et al. [22] and Abid et al. [23] suggested
that function signatures or call terms (such as method name and
parameter) are key components of code in the summarization
process, indicating some lines of code that contain more infor-
mation than others, aligning with our finding that code context
is useful for complete summaries, but concision decreases with
lines read.

So far, we have looked at how gaze patterns of participants
change in relation to the task, the quality of summaries gener-
ated, and the amount of context analyzed. In the next subsection,
we categorize the type of context on which the participants
fixated.

C. RQ3: Attention to Context

We found that of the types of context, participants spent a
vast majority of their time looking at contextual methods and
variable declarations in the same class as the target method.
Surprisingly, we found that participants spent a comparatively
small amount of time looking at methods in the call graph,
even though we designed the second and third sentences in the
summary to contain information from the callees and callers
respectively. In Fig. 2 we report four graphs, each showing
averages for total time spent fixating on tokens inside each type
of context, normalized by total time spent looking at context for
the task.

In Fig. 2(a), we report the attention grouped by the project
type. We found see similar trends for four of the five project,
namely Scrimage, Openaudible, MLTK, and FreeCol. For these
projects, participants spent an average of 40-65% of their time
looking at methods in the same class as the target method.
Surprisingly, for the Mallet project, on an average participants
spent more time looking at the variable, declarations, and other
data inside the class than methods and calls. One possible
explanation for this outlier we investigated was that Mallet
relies more on class variables than the other projects. However,

we did not find significant differences between the number of
class declarations and variables for Mallet, compared to other
projects.

In Fig. 2(b), we analyze the difference in attention grouped by
session, i.e., the order in which the project was processed by a
participant. We found that on average as participants processed
more sessions, they relied more on information inside the class,
both methods and class declarations. This is expected because
as participants repeat the task, they form a consistent pattern
of navigating the context. This supports the earlier observation
that overall, the participants found the class of the target method
to be most important part of the context.

In Fig. 2(c), we analyze the difference in attention grouped by
method, i.e., the order in which the method was processed by a
participant in any given session. We observe no significant trend
based on the order in which the method was processed. This
supports our observation from RQ1 and RQ2 that although the
participants make fewer fixations as they process more methods,
they still get the same general code context coverage in the
context.

In Fig. 2(d), we analyze the difference in attention of each
participant. We found that most of the participants relied on
class and instance methods and the class declaration for con-
textual information. We found that only participant 5 and 6
are outliers, and spent a significant amount of time fixating on
context in other files, and these are areas that do not fall under
the methods in the call hierarchy. This suggests that observa-
tions from (a), (b), and (c) are consistent with a majority of the
participants and not skewed heavily by an extreme minority.

Overall, our interpretation of these results is that there is a
general agreement of trends between the participants, which
is unaffected by method or session order. We observe a few
spikes in class declarations, which may be skewed by the Mallet
project. These observations make a case that the most important
part of context for a summarization task like this is all the
information inside the class.

VI. EXAMPLE

In Fig. 4 we show an example containing target method and
three corresponding summaries written by participant 3, 4, and
10. These may explain some of our observations from Sec-
tion V. Notice, the summaries written by Participant 3 and 10
are similar, but the summary written by 10 is slightly clearer. On

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

WALLACE et al.: PROGRAMMER VISUAL ATTENTION DURING CONTEXT-AWARE CODE SUMMARIZATION 1533

Fig. 2. Graphs illustrating the distribution of programmer attention for varying groups defined on the X-axis as (a) project names, (b) the order in which
the session occurred, (c) the order in which the method was seen, and (d) the participant ID. The legend on top is common for the bar colors on all graphs.
The Y-axis in each graph shows mean value for each type of context. The values were normalized by the total time spent fixating on context outside the
target method for each method-summary pair, prior to computing mean for each category.

Fig. 3. Bar chart showing the delta values for gaze metrics computed
between summaries rated low(< =3) and highly(5) in terms of completeness
and conciseness.

the other hand, the summaries written by Participant 4 for the
same method are lengthy and hard to comprehend and received
one of the lowest overall scores by our graders (Overall= 3.5).

We found that the key to writing the last sentence for both
participant 3 and participant 10’s summaries is to track the
class variable minCapacity. Instances like this might explain
why mallet shows a higher attention on class declarations than
methods as observed in Section V-C.

For this task, 90% of the participants first looked at
the ternary operator and arraycopy elements, before looking

through the call graph and class methods. We provide a rep-
resentative example from participant 3: The participant started
with minCapacity, before following the call graph to incremen,
which is also a class method. After tracking through several
overloaded methods, they looked back at the lower half of
minCapacity before looking back to the instructions, where they
write their summary. After looking back and forth from the
target method and the call graph twice more, they move to the
next task.

We also notice that participant 4’s summary is an example
of summaries where excessive code coverage leads to verbose
and unclear summary. Note this is just one example we found
that fits the observations from Section V-B, we do not claim
that this example is representative of a trend or make any
recommendations based on this example.

VII. THREATS TO VALIDITY

Our study has several threats to validity. One threat lies
with the selection of projects. We selected open-source Github
projects that neither we nor the participants had any contribution
in developing. Some of our results might be specific to these
projects and any errors or shortcomings these projects may
have. We tried to mitigate this threat by choosing projects on
varying topics, with several contributors and varying sizes.

Our selection of methods is a threat to validity because, like
all studies of this nature, it is not feasible to evaluate all methods

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

1534 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 5, MAY 2025

Fig. 4. Example with source code of a method in project mallet, accompa-
nied by summaries written by participant 3, 4, and 10.

and our selection of methods ultimately relies on our judgment
(see Section III-F). A different set of methods could lead to
different results. The methods chosen could be too simple and
not rely on context to understand them. To mitigate this threat,
we chose methods that were called multiple times or had roles
evident from the context. We also asked the participants in
their instructions to explain the method in context of the whole
program to encourage them to explore enough of the context to
be accurate.

Another threat lies with our pool of participants. Our par-
ticipants are graduate students, and their experiences may not
translate directly to those of active industry professionals. To
mitigate this threat, we screened participants with previous (and
recent) Java development experience. However, industry profes-
sionals may have specific mental models for their industry and
may utilize visual attention strategies that our participants do
not represent. Additionally, the participants in our study had a
range of experience between two and five years, meaning that it

is possible that our results would not generalize to people with
experience levels outside this range. Another threat to validity
is our sample of participants. Even though we had 60 hours
of total programmer time, these hours were from ten program-
mers. A different set of programmers could in theory lead to
a different set of conclusions. Another threat with our pool of
participants is that half of them wear corrective glasses. In spe-
cific circumstances, corrective glasses can lead to false fixation
readings. To try to mitigate this threat, we recommended that
participants complete the task without glasses or use contact
lenses if they are able.

Another threat lies with administrators. Our studies were ad-
ministered by two administrators across several months. There
may be differences in the administration styles and the way the
task was explained to each participant, which could result in
variation between data points. To somewhat mitigate this threat,
we created a common script and provided the instructions in text
file to each participant.

Another threat lies with the study conditions. The room in
which we conducted the study has a window. As the study
was conducted over several months, the lighting conditions
may have changed between sessions. Newer generation eye
tracker claim to work in all lighting conditions but can cause
inconsistencies in rare situations. These external threats exist
for all eye tracking studies.

Another threat lies with the extraction of context categories.
The accuracy of these categorizations is limited by the accuracy
of both srcML [47] and iTrace-toolkit [42]. Additionally, the
categorization of call graph is limited to a static call graph gen-
erated by Call-Hierarchy Plugin for Eclipse for Java IDE 2023.
We only report average fixation duration and counts, normalized
by the sum of fixation duration and counts for a session, to
mitigate some of these threats. We also take measures to avoid
false positives within any category of context, such that, if a
fixation cannot be confirmed to be within the strict boundaries
of any of the other categories, we assign it the “project context”
category.

VIII. CONCLUSION & FUTURE WORK

In conclusion, we designed an eye tracking study to ana-
lyze how programmers read source code during context-aware
source code summarization. We first studied how the gaze pat-
terns change as participants progress through tasks. We ob-
served a statistically significant decrease in fixation counts and
regression rates as participants summarize more methods in a
session. This observation meant that the participant retained
and internalized information about the project code base from
earlier tasks. Another possibility was that the participant was
bored or exhausted. To test the latter, we rated and compared
the quality of summaries and found no significant change in the
quality of summaries, as one would expect from exhaustion or
boredom.

We also found that regardless of progress, the amount of
context a participant looked at in terms of lines visited, methods
visited, and fixations affects the quality of summaries. This

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

WALLACE et al.: PROGRAMMER VISUAL ATTENTION DURING CONTEXT-AWARE CODE SUMMARIZATION 1535

effect can be best described as similar to a bell curve, such that
the quality of a summary increases with coverage of context
until a peak, after which the quality declines as the summaries
become less concise. The outcome of this effect starts to answer
some open questions about what parts of the context people
need to understand the rationale behind code, and indicates that
finding specific areas of context may be more important than the
quantity of context.

Next, we categorize and analyze the context on that the par-
ticipants looked at for the longest fixation duration. We found
that participants spent the longest time looking at class and
instance methods, followed by class declarations and call graph.
We observed this trend to be unaffected by project name, task
order, session order, or participant.

This study also contributes to a body of work answering open
questions about how quickly people may learn a new codebase,
by quantifying that people need to read up to 35% fewer words
after summarizing methods in each session. It also adds to an
ongoing discussion in the literature about the need for context to
understand code by providing information about not only how
much context people need, but also how often they read it.

Based on our study, we propose three main lines of inquiry
for future work:

1) Based on our findings in RQ1, we propose that more
in-depth studies such as ours may be needed to study
the effect of retention of project-level information for SE
tasks such as code debugging and testing.

2) Based on our findings in RQ2 and RQ3, we propose that
automated code summarization models may be improved
by using specific areas of the project as context. Based
on our findings, we recommend future studies prioritize
class and instance methods first, class declaration second,
and call graph third. Additionally, analysis of scan paths
could be used to discover which reading order results in
the best summaries [27].

3) We hope our dataset of context-aware summaries aids
future studies in automatic code summarization. We pro-
pose using the results of this study as a guide for gen-
erating code summaries that describe rationale, such as
showing what code context should be included as inputs
for AI-based technologies that generate code summaries
or helping decide how large training data window sizes
should be. Additionally, we hope this dataset will be
useful as a starting point for research in other areas ex-
panding into context-aware AI-driven approaches, such
as bug localization.

Reproducibility To ensure reproducibility of the results, we
release all datasets and source code, along with an online repro-
ducibility guide with instructions outlining how we produced
our results via an online appendix on Zenodo: https://doi.org/
10.5281/zenodo.14873017

ACKNOWLEDGMENT

Any opinions, findings, and conclusions expressed herein are
the authors’ and do not necessarily reflect those of the sponsors.
We also sincerely thank participants of our qualitative study.

REFERENCES

[1] J. Cámara, J. Troya, L. Burgueño, and A. Vallecillo, “On the assessment
of generative AI in modeling tasks: An experience report with chatGPT
and UML,” Softw. Syst. Model., vol. 22, no. 3, pp. 781–793, 2023.

[2] P. W. McBurney and C. McMillan, “Automatic documentation genera-
tion via source code summarization of method context,” in Proc. 22nd
Int. Conf. Program Comprehension (ICPC), 2014, pp. 279–290.

[3] J. Krinke, “Effects of context on program slicing,” J. Syst. Softw.,
vol. 79, no. 9, pp. 1249–1260, 2006.

[4] S. Haque, A. LeClair, L. Wu, and C. McMillan, “Improved automatic
summarization of subroutines via attention to file context,” in Proc. Int.
Conf. Mining Softw. Repositories, 2020, pp. 300–310.

[5] A. Bansal, S. Haque, and C. McMillan, “Project-level encoding for
neural source code summarization of subroutines,” in Int. Conf. Program
Comprehension, 2021, pp. 253–264.

[6] A. Bansal, Z. Eberhart, Z. Karas, Y. Huang, and C. McMillan, “Function
call graph context encoding for neural source code summarization,”
IEEE Trans. Softw. Eng., vol. 49, no. 9, pp. 4268–4281, Sep. 2023.

[7] R. Bednarik, “Expertise-dependent visual attention strategies develop
over time during debugging with multiple code representations,” Int. J.
Human-Comput. Stud., vol. 70, no. 2, pp. 143–155, 2012.

[8] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,
“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proc. 36th Int. Conf. Softw. Eng. (ICSE),
2014, pp. 390–401.

[9] Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, “A systematic literature
review on the usage of eye-tracking in software engineering,” Inf. Softw.
Technol., vol. 67, pp. 79–107, 2015.

[10] R. Bednarik and M. Tukiainen, “Temporal eye-tracking data: Evolution
of debugging strategies with multiple representations,” in Proc. Symp.
Eye tracking Res. & Appl., 2008, pp. 99–102.

[11] N. Ouerhani, R. Von Wartburg, H. Hugli, and R. Muri, “Empirical
validation of the saliency-based model of visual attention,” ELCVIA
Electron. Lett. Comput. Vis. Image Anal., vol. 3, no. 1, pp. 13–24, 2004.

[12] B. M. Hood, J. D. Willen, and J. Driver, “Adult’s eyes trigger shifts
of visual attention in human infants,” Psychol. Sci., vol. 9, no. 2,
pp. 131–134, 1998.

[13] C. N. Olivers, F. Meijer, and J. Theeuwes, “Feature-based memory-
driven attentional capture: Visual working memory content affects visual
attention.” J. Exp. Psychol.: Human Perception Perform., vol. 32, no. 5,
2006, Art. no. 1243.

[14] M. Paltenghi and M. Pradel, “Thinking like a developer? Comparing
the attention of humans with neural models of code,” in Proc. 36th
IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Piscataway, NJ,
USA: IEEE Press, 2021, pp. 867–879.

[15] R. Bednarik and M. Tukiainen, “An eye-tracking methodology for
characterizing program comprehension processes,” in Proc. Symp. Eye
Tracking Res. & Appl., 2006, pp. 125–132.

[16] Z. Karas, A. Bansal, Y. Zhang, T. Li, C. McMillan, and Y. Huang, “A
tale of two comprehensions? Analyzing student programmer attention
during code summarization,” ACM Trans. Softw. Eng. Methodol., vol.
33, no. 7, pp. 1–3, 2024.

[17] A. Bansal, B. Sharif, and C. McMillan, “Towards modeling human
attention from eye movements for neutral source code summarization,”
in Proc. ACM Human-Comput. Interact., ETRA, vol. 7, New York, NY,
USA: ACM, 2023.

[18] A. Bansal, C.-Y. Su, Z. Karas, Y. Zhang, Y. Huang, T. J.-J. Li, and
C. McMillan, “Modeling programmer attention as scanpath prediction,”
in Proc. 38th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
2023.

[19] Y. Zhang, J. Li, Z. Karas, A. Bansal, T. J.-J. Li, C. McMillan, K. Leach,
and Y. Huang, “Eyetrans: Merging human and machine attention for
neural code summarization,” in Proc. ACM Joint Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng. (ESEC/FSE), 2024, pp. 115–136.

[20] Y. Braw, M. Ratmansky, and I. Goor-Aryeh, “Integrating the numerical
pain rating scale (nprs) with an eye tracker: Feasibility and initial
validation,” in Pain Management-From Acute to Chronic and Beyond,
IntechOpen, 2023.

[21] C. Aschwanden and M. Crosby, “Code scanning patterns in program
comprehension,” in Proc. 39th hawaii Int. Conf. Syst. Sci., Citeseer,
2006.

[22] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,
“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proc. 36th Int. Conf. Softw. Eng., New York,
NY, USA: ACM, 2014, pp. 390–401.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.5281/zenodo.14873017
https://doi.org/10.5281/zenodo.14873017

1536 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 5, MAY 2025

[23] N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I. Maletic,
“Developer reading behavior while summarizing java methods: Size and
context matters,” in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE),
Piscataway, NJ, USA: IEEE Press, 2019, pp. 384–395.

[24] Y.-G. Guéhéneuc, “Taupe: towards understanding program compre-
hension,” in Proc. Conf. Center Adv. Stud. Collaborative Res., 2006,
pp. 1–es.

[25] B. Sharif and J. I. Maletic, “The effects of layout on detecting the
role of design patterns,” in Proc. 23rd IEEE Conf. Softw. Eng. Educ.
Training (CSEET), Washington, DC, USA: IEEE Comput. Society, 2010,
pp. 41–48, doi: 10.1109/CSEET.2010.23.

[26] D. Lübke, M. Ahrens, and K. Schneider, “Influence of diagram layout
and scrolling on understandability of bpmn processes: An eye tracking
experiment with BPMN diagrams,” Inf. Technol. Manage., vol. 22, no.
2, pp. 99–131, 2021.

[27] Z. Sharafi, B. Sharif, Y. Guéhéneuc, A. Begel, R. Bednarik, and
M. E. Crosby, “A practical guide on conducting eye tracking studies
in software engineering,” Empir. Softw. Eng., vol. 25, no. 5, pp. 3128–
3174, 2020, doi: 10.1007/s10664-020-09829-4.

[28] U. Obaidellah, M. A. Haek, and P. C. Cheng, “A survey on the usage of
eye-tracking in computer programming,” ACM Comput. Surv., vol. 51,
no. 1, pp. 5:1–5:58, 2018, doi: 10.1145/3145904.

[29] R. Turner, M. Falcone, B. Sharif, and A. Lazar, “An eye-tracking study
assessing the comprehension of C++ and Python source code,” in Proc.
Symp. Eye Tracking Res. Appl., 2014, pp. 231–234.

[30] Z. Sharafi, I. Bertram, M. Flanagan, and W. Weimer, “Eyes on code:
A study on developers’ code navigation strategies,” IEEE Trans. Softw.
Eng., vol. 48, no. 5, pp. 1692–1704, May 2022.

[31] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program compre-
hension with source code summarization,” in Proc. 32Nd ACM/IEEE
Int. Conf. Softw. Eng., vol.2, New York, NY, USA: ACM, 2010,
pp. 223–226.

[32] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in Proc. 33rd Int.
Conf. Softw. Eng., New York, NY, USA: ACM, 2011, pp. 101–110.

[33] P. W. McBurney, C. Liu, and C. McMillan, “Automated feature discovery
via sentence selection and source code summarization,” J. Softw.: Evol.
Process, vol. 28, no. 2, pp. 120–145, 2016.

[34] B. Zhang, E. Hill, and J. Clause, “Towards automatically generat-
ing descriptive names for unit tests,” in Proc. 31st IEEE/ACM Int.
Conf. Automated Softw. Eng., New York, NY, USA: ACM, 2016,
pp. 625–636.

[35] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proc. 54th Annu. Meeting Assoc.
Comput. Linguistics (Volume 1 Long Papers), 2016, pp. 2073–2083.

[36] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred api knowledge,” in Proc. 27th Int. Joint Conf.
Artif. Intell., Stockholm, Sweden: AAAI Press, 2018, pp. 2269–2275.

[37] C.-Y. Su and C. McMillan, “Distilled GPT for source code summariza-
tion,” Automated Softw. Eng., vol. 31, no. 1, p. 22, 2024.

[38] M. Geng et al., “Large language models are few-shot summarizers:
Multi-intent comment generation via in-context learning,” in Proc. 46th
IEEE/ACM Int. Conf. Softw. Eng., 2024, pp. 1–13.

[39] C.-Y. Su, A. Bansal, V. Jain, S. Ghanavati, and C. Mcmillan, “A
language model of java methods with train/test deduplication,” 2023,
arXiv:2305.08286.

[40] P. Zhang, Z. Liu, S. Xiao, N. Shao, Q. Ye, and Z. Dou, “Soaring from
4k to 400k: Extending LLM’s context with activation beacon,” 2024,
arXiv:2401.03462.

[41] A. Bansal, C.-Y. Su, and C. McMillan, “Revisiting file context for source
code summarization,” 2023, arXiv:2309.02326.

[42] J. Behler, P. Weston, D. T. Guarnera, B. Sharif, and J. I. Maletic,
“itrace-toolkit: A pipeline for analyzing eye-tracking data of software
engineering studies,” in Proc. IEEE/ACM 45th Int. Conf. Softw. Eng.:
Companion Proc. (ICSE-Companion), 2023, pp. 46–50.

[43] T. R. Shaffer, J. L. Wise, B. M. Walters, S. C. Müller, M. Falcone, and
B. Sharif, “Itrace: Enabling eye tracking on software artifacts within the
ide to support software engineering tasks,” in Proc. ESEC/FSE, 2015.
New York, NY, USA: ACM, 2015, pp. 954–957.

[44] V. Zyrianov, D. T. Guarnera, C. S. Peterson, B. Sharif, and J. I. Maletic,
“Automated recording and semantics-aware replaying of high-speed eye
tracking and interaction data to support cognitive studies of software
engineering tasks,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.
(ICSME), 2020, pp. 464–475.

[45] D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic, and B. Sharif,
“itrace: Eye tracking infrastructure for development environments,” in
Proc. ACM Symp. Eye Tracking Res. & Appl., 2018, pp. 1–3.

[46] B. Clark and B. Sharif, “itracevis: Visualizing eye movement data within
eclipse,” in Proc. IEEE Work. Conf. Softw. Visualization (VISSOFT),
Piscataway, NJ, USA: IEEE Press, 2017, pp. 22–32.

[47] M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight transforma-
tion and fact extraction with the SRCML toolkit,” in Proc. IEEE 11th
Int. Work. Conf. Source Code Anal. Manipulation, Piscataway, NJ, USA:
IEEE Press, 2011, pp. 173–184.

[48] Tobii, “Reach further with your research: Choose tobii pro fusion,”
2023. [Online]. Available: https://www.tobii.com/products/eye-trackers/
screen-based/tobii-pro-fusion

[49] G. Buscher, E. Cutrell, and M. R. Morris, “What do you see when you’re
surfing? Using eye tracking to predict salient regions of web pages,” in
Proc. (CHI), New York, NY, USA: ACM, 2009, pp. 21–30.

[50] R. W. Booth and U. W. Weger, “The function of regressions in reading:
Backward eye movements allow rereading,” Memory & Cognit., vol. 41,
pp. 82–97, Aug. 2012.

[51] P. Rodeghero and C. McMillan, “An empirical study on the patterns of
eye movement during summarization tasks,” in Proc. ACM/IEEE Int.
Symp. Empirical Softw. Eng. Meas. (ESEM), 2015, pp. 1–10.

[52] M. Son, J. Lee, and A. Godfroid, “Attention to form and meaning
revisited: Insights from eye tracking,” Stud. 2nd Lang. Acquisition,
vol. 44, no. 3, pp. 788–817, 2022.

[53] C. Treude, J. Middleton, and T. Atapattu, “Beyond accuracy: Assessing
software documentation quality,” in Proc. 28th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., 2020, pp. 1509–1512.

[54] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization
of bug reports,” IEEE Trans. Softw. Eng., vol. 40, no. 4, pp. 366–380,
Apr. 2014.

[55] V. Rieser and O. Lemon, Reinforcement Learning for Adaptive Dialogue
Systems: A Data-Driven Methodology for Dialogue Management and
Natural Language Generation. New York, NY, USA: Springer Science
& Business Media, 2011.

[56] A. Wood, P. Rodeghero, A. Armaly, and C. McMillan, “Detecting speech
act types in developer question/answer conversations during bug repair,”
in Proc. 26th ACM joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2018, pp. 491–502.

[57] T. Liu and T. Yuizono, “Mind mapping training’s effects on reading
ability: Detection based on eye tracking sensors,” Sensors, vol. 20,
no. 16, 2020, Art. no. 4422.

[58] N. Nachar et al., “The Mann-Whitney u: A test for assessing whether two
independent samples come from the same distribution,” Tut. Quantitative
Methods Psychol., vol. 4, no. 1, pp. 13–20, 2008.

[59] J. Starke, C. Luce, and J. Sillito, “Searching and skimming: An ex-
ploratory study,” in Proc. IEEE Int. Conf. Softw. Maintenance, Piscat-
away, NJ, USA: IEEE Press, 2009, pp. 157–166.

Robert Wallace is currently working toward the
Ph.D. degree with the University of Notre Dame, ad-
vised by Dr. Collin McMillan. His research interests
include in software engineering, natural language
proccessing, and human attention.

Aakash Bansal received the Ph.D. degree from
the University of Notre Dame. He is an Assistant
Professor with the Division of Computer Science
and Engineering, Louisiana State University. His
research is broadly in the field of AI for software
engineering. Specifically, his work focuses on de-
signing AI models of code that leverage context and
human-factors.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/CSEET.2010.23
http://dx.doi.org/10.1007/s10664-020-09829-4
http://dx.doi.org/10.1145/3145904
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion

WALLACE et al.: PROGRAMMER VISUAL ATTENTION DURING CONTEXT-AWARE CODE SUMMARIZATION 1537

Zachary Karas (Graduate Student Member, IEEE)
is currently working toward the Ph.D. degree with
Vanderbilt University, advised by Dr. Yu Huang.
He studies the cognitive factors of software en-
gineering to improve computer science education
and software development. Using neuroimaging and
eye-tracking, his research examines the cognitive
processes underlying code writing, summarization,
and comprehension.

Ningzhi Tang is currently working toward the Ph.D.
degree with the Department of Computer Science
and Engineering, University of Notre Dame, ad-
vised by Prof. Toby Jia-Jun Li in the SaNDwich
Lab. His research focuses on developing human-
centered tools to enhance developers’ programming
experience, particularly in code comprehension and
debugging, while also exploring the challenges and
opportunities of AI in software engineering.

Yu Huang is currently an Assistant Professor with
the Department of Computer Science, Institute for
Software Integrated Systems, Vanderbilt University.
Her expertise lies in the fields of human factors and
software engineering, with a specific emphasis on
leveraging diverse modalities to explore user cogni-
tion and behaviors, and their intricate connection to
AI for software engineering, sustainability for open
source software, and computer science education.

Toby Jia-Jun Li received the Ph.D. degree from
the Human-Computer Interaction, Carnegie Mellon
University, where he was advised by Brad A. Myers.
He is an Assistant Professor with the Department of
Computer Science and Engineering, University of
Notre Dame, where he leads the SaNDwich Lab. He
also serves as the Director of the Human-Centered
Responsible AI Lab, Lucy Family Institute for Data
& Society and a Faculty Fellow with the Institute
for Educational Initiatives (IEI).

Collin McMillan received the Ph.D. degree from
the College of William & Mary, in 2012. He is
an Associate Professor with the Department of
Computer Science and Engineering, University of
Notre Dame. His work has since been recognized
with the NSF CAREER Award and the ASEE
Illinois/Indiana Teacher of the Year Award.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 18,2025 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

