
Developer Behaviors in Validating and Repairing
LLM-Generated Code Using IDE and Eye Tracking

Ningzhi Tang*, Meng Chen*, Zheng Ning, Aakash Bansal,
Yu Huang, Collin McMillan, Toby Jia-Jun Li

VL/HCC 2024

* Source: GitHub Copilot, retrieved from https://github.com/features/copilot

CodeWhisperer

2

LLMs Transform Developer Workflows

https://github.com/features/copilot

3

LLMs Make Distinct Types of Mistakes

Bird or Lion?

* Image generated by GPT-4V.

Unique

4

Evaluate its Correctness

Fix Potential Bugs

Integrate into Codebase

5

Research Gap

Prompt

Generate
Validate
Repair❔

6

Research Question

RQ1. What are developers’ perceptions and strategies that is specific for
validating and repairing LLM-generated code?

🔧 Error discovery and repair strategies are crucial for successful human-AI interaction.

⚠ Compared to traditional debugging, LLMs can generate different types of errors than
humans developers.

7

Research Question

RQ1. What are developers’ perceptions and strategies that is specific for
validating and repairing LLM-generated code?

RQ2. How does awareness of code provenance (i.e., whether the code is
LLM-generated or human-written) affect code validation and repair behavior?

🧠 Awareness of code provenance impacts developers’ behavior when programming,
even though they may not always be conscious of such biases.

8

Research Question

RQ1. What are developers’ perceptions and strategies that is specific for
validating and repairing LLM-generated code?

RQ2. How does awareness of code provenance (i.e., whether the code is
LLM-generated or human-written) affect code validation and repair behavior?

🛠 Specifically designed for coding

🌍 Widely used

📚 Previously studied in other works

Participants

🏫 University of Notre Dame
 28 participants

 Gender
 17 male, 11 female

🎓 Education Level
 14 graduate, 14 undergraduate

💻 Majors
 26 in computer science & engineering

⌛ Programming Experience
 5.5 years (average)

🤖 GitHub Copilot Usage
 8 participants used it before the study

9

Informed Group (14) Non-Informed Group (14)

10

Pre-Study Questionnaire

Programming Task 1

Programming Task 2

Programming Task 3

2h

Semi-Structured Interview 15min

For each programming task:

Read Prompts

NASA-TLX

Validate and Repair Code 20min

Study Protocol

Programming Tasks

Task 1. Algorithm Design: Kakamora

Find the path from top-left to bottom-right such that the sum of numbers is minimized.

11

Sample Input
5
1 5 2 3 6
4 3 2 1 2
3 8 9 2 1
0 5 2 3 4
3 1 4 2 1

Sample Output
12
1 3 2 2 3 1

Copilot’s Solution

5
1 5 2 3 6
4 3 2 1 2
3 8 9 2 1
0 5 2 3 4
3 1 4 2 1

19
1 3 3 3 3 2 2 2 2

Programming Tasks

Task 2. Graphical User Interface (GUI): Calculator

Use the Java GUI programming API to implement the front end of a calculator.

12

Programming Tasks

Task 3. Object-Oriented Programming (OOP): ZooSystem

Implement a zoo system with inherited animal classes and various management functions.

13

How Code Is Generated: Diverse Error Types

14

 Copilot generated Code Ck containing the most representative errors Ek of the most diverse types

 Prompt P1 Prompt P2 … Prompt Pn

 Code C1 w/ Error E1 Code C2 w/ Error E2 … Code Cn w/ Error En

Researchers gathered them and selected the final Prompt Pk

Bug Taxonomy

15* B. Beizer, Software testing techniques. Dreamtech Press, 2003.

Data Collection

16

Video Recording

Survey

Interview

Subjective Analysis
Recall & Observer Biases

Complete With

Behavior Tracking
CodeGRITS: JetBrains Plugin

IDE Tracking
Interactions within IDE

Eye Tracking
Eye movements

CodeGRITS - Gaze Recording & IDE Tracking System

17

IDE Tracking

Eye Tracking

Live Demo

Paper

18

codegrits.github.io/
CodeGRITS

Website

Source Code

High-Level Behavior Aggregation

19

RQ1. Perceptions and Strategies of Developers

LLM-generated code performs well in terms of coding style and readability.

“[LLM-generated code] does follow human formatting guidelines.” (P21)

“It writes better variable names or method names.” (P25)

“It contains more detailed comments compared to human-written code.” (P14)

20

RQ1. Perceptions and Strategies of Developers

LLM-generated code performs well in terms of coding style and readability.
However, it makes mistakes that are uncommon for human developers.

“I was really confused when I saw the hardcoded ‘1’, ‘2’, and ‘3’.” (P21)

21

Sample Input
5
1 5 2 3 6
4 3 2 1 2
3 8 9 2 1
0 5 2 3 4
3 1 4 2 1

Sample Output
12
1 3 2 2 3 1

RQ1. Perceptions and Strategies of Developers

Developers have shifted their attention focus from details to structure.

“Humans are more error-prone than Copilot when it comes to details [...]”

“[...] I don’t think Copilot can generate really complicated logic structure. LLM-generated

similar code tends to be either all correct or all incorrect.” (P25)

22

0 1 2 !

RQ1. Perceptions and Strategies of Developers

Developers switch their fixations consecutively between code and prompts.

“[...] disambiguate the mismatch between their expectation and code output.” (P14)

“Switching between instructions and code is annoying and challenging.” (P3)

23

RQ1. Perceptions and Strategies of Developers

Developers use Copilot to generate comments to facilitate understanding.

“If a line of code has a bug, generating comments from it will help me figure it out.” (P25)

24

Inline Comments

RQ2. Effects of Code Provenance Knowledge

If uninformed, developers may not distinguish code provenance.

25

78.6%

I didn’t realize the code
was generated by LLMs.

RQ2. Effects of Code Provenance Knowledge

If uninformed, developers may not distinguish code provenance.

If informed, developers performs better at code validation and repair.

26

Bug fix rate: 0.577 > 0.446. Performed better on 8/13 bugs.

RQ2. Effects of Code Provenance Knowledge

If informed, developers use Copilot more and Clipboard less.

27

Substitute

Copilot Cut Copy Paste

RQ2. Effects of Code Provenance Knowledge

If informed, developers use Copilot more and Clipboard less.

If informed, developers trace code more frequently.

28

Substitute

Copilot Cut Copy Paste

Find Goto Saccade Time

RQ2. Effects of Code Provenance Knowledge

If informed, developers experienced higher cognitive workload.

29

Self-Reported Effort
(via NASA-TLX)

Fixation Time &
Average Fixation Duration

6.39 > 5.60
254.3 > 206.7
0.493 > 0.438

30

Implications

LLMs make distinct types of mistakes and
developers have shifted attention from
details to structure.

Adaptive systems specifically designed
based the unique characteristics of
LLM-generated code.

Usage of Copilot to generate inline
comments, but with frequent switching
between code and prompts.

Improved interfaces to support leveraging
LLM to understand and modify the code,
while reducing the switching costs.

Developers may not realize the code
provenance, yet it impacts their behavior
and performance.

Detecting and informing developers of the
code provenance information would
enhance interactions with LLMs.

31

Future Work

Enhancing Interactions with LLM

Code Understanding & Modification

Textual Representation

Tree Representation
Multi-Level

Syntax-Aware

Developer Behaviors in Validating and Repairing LLM-Generated Code Using IDE and Eye Tracking
Ningzhi Tang*, Meng Chen*, Zheng Ning, Aakash Bansal, Yu Huang, Collin McMillan, Toby Jia-Jun Li

{ntang, mchen24, zning, abansal1, cmc, toby.j.li}@nd.edu, yu.huang@vanderbilt.edu

Ningzhi Tang
 nztang.com

 ntang@nd.edu

 @TangNingzhi

 ningzhi_tang

32

LLMs make distinct types of mistakes and
developers have shifted attention from
details to structure.

Adaptive systems specifically designed
based the unique characteristics of
LLM-generated code.

Usage of Copilot to generate inline
comments, but with frequent switching
between code and prompts.

Usage of Copilot to generate inline
comments, but with frequent switching
between code and prompts.

Developers may not realize the code
provenance, yet it impacts their behavior
and performance.

Detecting and informing developers of the
code provenance information would
enhance interactions with LLMs.

codegrits.github.io/
CodeGRITS

Acknowledgment

This project was support in part by NSF
grants CCF-2211428 and CCF-2100035. Any
opinions, findings, or recommendations
expressed here are those of the authors and
do not necessarily reflect the views of the
sponsors.

https://www.nztang.com/
mailto:ntang@nd.edu
https://twitter.com/TangNingzhi

