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* Source: GitHub Copilot, retrieved from https://github.com/features/copilot 

CodeWhisperer
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LLMs Transform Developer Workflows

https://github.com/features/copilot
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LLMs Make Distinct Types of Mistakes

Bird or Lion?

* Image generated by GPT-4V. 

Unique
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Evaluate its Correctness

Fix Potential Bugs

Integrate into Codebase
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Research Gap

Prompt

Generate
Validate
Repair❔
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Research Question

RQ1. What are developers’ perceptions and strategies that is specific for 
validating and repairing LLM-generated code?

🔧 Error discovery and repair strategies are crucial for successful human-AI interaction.

⚠ Compared to traditional debugging, LLMs can generate different types of errors than 
humans developers.
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Research Question

RQ1. What are developers’ perceptions and strategies that is specific for 
validating and repairing LLM-generated code?

RQ2. How does awareness of code provenance (i.e., whether the code is 
LLM-generated or human-written) affect code validation and repair behavior?

🧠 Awareness of code provenance impacts developers’ behavior when programming, 
even though they may not always be conscious of such biases.
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Research Question

RQ1. What are developers’ perceptions and strategies that is specific for 
validating and repairing LLM-generated code?

RQ2. How does awareness of code provenance (i.e., whether the code is 
LLM-generated or human-written) affect code validation and repair behavior?

🛠 Specifically designed for coding

🌍 Widely used

📚 Previously studied in other works



Participants

🏫 University of Notre Dame
    28 participants

 Gender
    17 male, 11 female

🎓 Education Level
    14 graduate, 14 undergraduate

💻 Majors
    26 in computer science & engineering

⌛ Programming Experience
    5.5 years (average)

🤖 GitHub Copilot Usage
    8 participants used it before the study
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Informed Group (14) Non-Informed Group (14)
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Pre-Study Questionnaire

Programming Task 1

Programming Task 2

Programming Task 3

2h

Semi-Structured Interview 15min

For each programming task:

Read Prompts

NASA-TLX

Validate and Repair Code 20min

Study Protocol



Programming Tasks

Task 1. Algorithm Design: Kakamora

Find the path from top-left to bottom-right such that the sum of numbers is minimized.
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Sample Input
5      
1 5 2 3 6
4 3 2 1 2
3 8 9 2 1
0 5 2 3 4
3 1 4 2 1

Sample Output
12
1 3 2 2 3 1

Copilot’s Solution

5
1 5 2 3 6
4 3 2 1 2
3 8 9 2 1
0 5 2 3 4
3 1 4 2 1

19
1 3 3 3 3 2 2 2 2



Programming Tasks

Task 2. Graphical User Interface (GUI): Calculator

Use the Java GUI programming API to implement the front end of a calculator.
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Programming Tasks

Task 3. Object-Oriented Programming (OOP): ZooSystem

Implement a zoo system with inherited animal classes and various management functions.
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How Code Is Generated: Diverse Error Types
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        Copilot generated Code Ck containing the most representative errors Ek of the most diverse types

    Prompt P1     Prompt P2 …     Prompt Pn

        Code C1 w/ Error E1         Code C2 w/ Error E2 …         Code Cn w/ Error En

Researchers gathered them and selected the final Prompt Pk



Bug Taxonomy

15* B. Beizer, Software testing techniques. Dreamtech Press, 2003.



Data Collection
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Video Recording

Survey

Interview

Subjective Analysis
Recall & Observer Biases

Complete With

Behavior Tracking
CodeGRITS: JetBrains Plugin

IDE Tracking
Interactions within IDE

Eye Tracking
Eye movements



CodeGRITS - Gaze Recording & IDE Tracking System
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IDE Tracking

Eye Tracking

Live Demo



Paper
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codegrits.github.io/
CodeGRITS

Website

Source Code



High-Level Behavior Aggregation
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RQ1. Perceptions and Strategies of Developers

LLM-generated code performs well in terms of coding style and readability.

“[LLM-generated code] does follow human formatting guidelines.” (P21)

“It writes better variable names or method names.” (P25)

“It contains more detailed comments compared to human-written code.” (P14)

20



RQ1. Perceptions and Strategies of Developers

LLM-generated code performs well in terms of coding style and readability.
However, it makes mistakes that are uncommon for human developers.

“I was really confused when I saw the hardcoded ‘1’, ‘2’, and ‘3’.” (P21)
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Sample Input
5      
1 5 2 3 6
4 3 2 1 2
3 8 9 2 1
0 5 2 3 4
3 1 4 2 1

Sample Output
12
1 3 2 2 3 1



RQ1. Perceptions and Strategies of Developers

Developers have shifted their attention focus from details to structure.

“Humans are more error-prone than Copilot when it comes to details [...]”

“[...] I don’t think Copilot can generate really complicated logic structure. LLM-generated 

similar code tends to be either all correct or all incorrect.” (P25)
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0 1 2 !



RQ1. Perceptions and Strategies of Developers

Developers switch their fixations consecutively between code and prompts.

“[...] disambiguate the mismatch between their expectation and code output.” (P14)

“Switching between instructions and code is annoying and challenging.” (P3)
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RQ1. Perceptions and Strategies of Developers

Developers use Copilot to generate comments to facilitate understanding.

“If a line of code has a bug, generating comments from it will help me figure it out.” (P25)
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Inline Comments



RQ2. Effects of Code Provenance Knowledge

If uninformed, developers may not distinguish code provenance.
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78.6%

I didn’t realize the code 
was generated by LLMs.



RQ2. Effects of Code Provenance Knowledge

If uninformed, developers may not distinguish code provenance.

If informed, developers performs better at code validation and repair.
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Bug fix rate: 0.577 > 0.446. Performed better on 8/13 bugs.



RQ2. Effects of Code Provenance Knowledge

If informed, developers use Copilot more and Clipboard less.
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Substitute

Copilot Cut   Copy    Paste



RQ2. Effects of Code Provenance Knowledge

If informed, developers use Copilot more and Clipboard less.

If informed, developers trace code more frequently.
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Substitute

Copilot Cut   Copy    Paste

Find Goto Saccade Time



RQ2. Effects of Code Provenance Knowledge

If informed, developers experienced higher cognitive workload.
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Self-Reported Effort 
(via NASA-TLX)

Fixation Time & 
Average Fixation Duration

6.39 > 5.60
254.3 > 206.7
0.493 > 0.438
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Implications

LLMs make distinct types of mistakes and 
developers have shifted attention from 
details to structure.

Adaptive systems specifically designed 
based the unique characteristics of 
LLM-generated code.

Usage of Copilot to generate inline 
comments, but with frequent switching 
between code and prompts.

Improved interfaces to support leveraging 
LLM to understand and modify the code, 
while reducing the switching costs.

Developers may not realize the code 
provenance, yet it impacts their behavior 
and performance.

Detecting and informing developers of the 
code provenance information would 
enhance interactions with LLMs.
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Future Work

Enhancing Interactions with LLM

Code Understanding & Modification

Textual Representation

Tree Representation
Multi-Level

Syntax-Aware
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LLMs make distinct types of mistakes and 
developers have shifted attention from 
details to structure.

Adaptive systems specifically designed 
based the unique characteristics of 
LLM-generated code.

Usage of Copilot to generate inline 
comments, but with frequent switching 
between code and prompts.

Usage of Copilot to generate inline 
comments, but with frequent switching 
between code and prompts.

Developers may not realize the code 
provenance, yet it impacts their behavior 
and performance.

Detecting and informing developers of the 
code provenance information would 
enhance interactions with LLMs.

codegrits.github.io/
CodeGRITS
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