VLA HCC

LIVERPOOL, UK 2024

Developer Behaviors in Validating and Repairing
LLM-Generated Code Using IDE and Eye Tracking

Ningzhi Tang*, Meng Chen*, Zheng Ning, Aakash Bansal,
Yu Huang, Collin McMillan, Toby Jia-Jun Li

UNIVERSITY OF

./ VANDERBILT
NOTRE DAME /" ONIVERSITY

VL/HCC 2024

LLMs Transform Developer Workflows

& GitHub Copilot

ChatGPT
O tabnine

adWS5S CodeWhisperer

* Source: GitHub Copilot, retrieved from https://qithub.com/features/copilot

https://github.com/features/copilot

LLMs Make Distinct Types of Mistakes

Lion(String name, double maneSize, String colorO0OfMane, String lionType){
super(name) ;

this.maneSize = maneSize;

this.color0fMane = colorOfMane;
this.lionType = lionType;
this.setSpecies("Lion");
this.setConservationStatus("Not Extinct");
this.setEatingHabits("Carnivores");
this.setFeatherColor("Al1l Colors");
this.setBeakShape("Short and Conical");
this.setEggSize(25);

Bird or Lion?

* Image generated by GPT-4V.

Evaluate its Correctness

—

ix Potential Bugs

datetime

parse_expenses (ex
n the list of tripl

\

-

expenses = []

line in expenses_string.splitlines():
line.startswith("#"):

date, valLs;, currency = line.split (" ") Integ rate into COdebase < >
expenses.append((datetime.datetime.strptime (date, " i \ /
float (value),

currency))
expenses

expenses_data

Research Gap

Expectation vs. Experience: Evaluating the Usability of Code
Generation Tools Powered by Large Language Models

pra

ABSTRAG

Reading Between the Lines: Modeling User Behavior and Costs in
Al-Assisted Programming

)
P ro I r l t sl =% Grounded Copilot: How Interact with
- Code-Generating Models

s
-— e . . . - -] SHRADDHA BARKE', UC San Dicgo. USA
MICHAEL B. JAMES", UC San Diego, USA

KEYWO!

NADIA POLIKARPOVA, UC San Dicgo, USA

o
e o

Co — HClth
e e

Additionsl Key Words and Phrases: Program Synthesis, Al Asistants, Grounded Theory
ACM Reference Format:

Shraddha Barke, Michael B, James, and Nadia Polikarpova. 2023. Grounded Copilt: How Programmers
Interact with Code-Generating Models. Proc. ACM Program. Lang. 7, OOPSLAL, Astice 78 (April 2023,
[| 27 pages. bitps/doiorg/10.1145/3586030

1 INTRODUCTION

The dream of an “Al assistant” working alongside the programmer has captured our imagination

Figure 1 Profil Sl g iy s el i g
CodeRec inside a0t Ml o . 201: Mt 1. 021 Rayh o al. 2014 s the i

finally seems within reach. OpenAls
oo

Fapel contnbtion

Authors akfresses Shaddba Farke, UC San Dego, USA. sharke@ucsdadu: Nichael B James, UC San Diego, USA.
¢ UC San Digo, US.

25 Copyrgh by e
2475142120084 AT
MipsHdorg 103580

Proc. ACM Program. Lang. Vo. 7, No. OOPSLAL, Artice 7. Pblication date April 2023

Research Question

RQ1. What are developers’ perceptions and strateqgies that is specific for
validating and repairing LLM-generated code?

“, Error discovery and repair strategies are crucial for successful human-Al interaction.

I. Compared to traditional debugging, LLMs can generate different types of errors than
humans developers.

Research Question

RQ1. What are developers’ perceptions and strateqgies that is specific for
validating and repairing LLM-generated code?

RQ2. How does awareness of code provenance (i.e., whether the code is
LLM-generated or human-written) affect code validation and repair behavior?

= Awareness of code provenance impacts developers’ behavior when programming,
even though they may not always be conscious of such biases.

Research Question

RQ1. What are developers’ perceptions and strateqgies that is specific for
validating and repairing LLM-generated code?

RQ2. How does awareness of code provenance (i.e., whether the code is
LLM-generated or human-written) affect code validation and repair behavior?

X Specifically designed for coding

& GitHub Copilot ~ © widely used

= Previously studied in other works

Participants

2= University of Notre Dame
28 participants

i1 Gender
17 male, 11 female

@ Education Level
14 graduate, 14 undergraduate

SPYVPPYY

Informed Group (14)

= Majors

26 in computer science & engineering
_. Programming Experience

5.5 years (average)

8 participants used it before the study

PYYRRLY

Non-Informed Group (14)

Study Protocol

Pre-Study Questionnaire

Programming Task 1
2h Programming Task 2

Programming Task 3

Semi-Structured Interview

15min

For each programming task:

Read Prompts

Validate and Repair Code

NASA-TLX

20min

10

Programming Tasks

Task 1. Algorithm Design: Kakamora

Find the path from top-left to bottom-right such that the sum of numbers is minimized.

Sample Input Copilot’s Solution

5

15236 5

43 2 1 2 1523€6

38921 <:::) 4 321 2

052034 b 38921@

31421 052 34
31421

Sample Output
12 19
132231 133332222

Programming Tasks

Task 2. Graphical User Interface (GUI): Calculator

Use the Java GUI programming API to implement the front end of a calculator.

aaaaaaaaaaaaaaaaaaaaaaaa

= S

C CE| | % / 0 1 2
7 8 9 3 4 5
B 5 6 6 7 8 +

Programming Tasks

Task 3. Object-Oriented Programming (OOP): ZooSystem

Implement a zoo system with inherited animal classes and various management functions.

© © Animal
4 setupAnimals(): void
r' [W addAnimal(String, String, Animal[]): Animal[]
© ¢ Mammal © « Bird © = Reptile

deleteAnimal(int, Animal[]): Animal[]

T

© « Lion © ¢ Hippo © ° Parrot © = Penguin © = Crocodile © ¢ Chameleon

displayAnimal(String, Animal[]): void

searchAnimal(String, String, Animal[]): void

@66 0606

printSummaryView (Animal[]): void
© %= ZooSystem

13

How Code Is Generated: Diverse Error Types

Prompt P, Prompt P, Prompt P

<> <>

@ Code C1 w/ Error E1 @ Code 02 w/ Error E2 Ca s @ Code Cn w/ Error En

Researchers gathered them and selected the final Prompt P,

@ Copilot generated Code C, containing the most representative errors E, of the most diverse types

14

Bug Taxonomy

TABLE I

BUG TYPES REPRESENTED IN PROGRAMMING TASKS BASED ON [59].

Task | Subtask | Bug Index | Bug Category
1.1 231x Missing Case
2 - 3226.4 String Manipulation-Insertion
1.2 3126 Illogic Predicates
231x Missing Case
ol 2.1 6125 Parameter Value
ateutator 22 614x Initialization State
3.1 6125 Parameter Value
39 6112 Wrong Component
ZooSvstem) 6125 Parameter Value
Ys 3:3 4164 Should be Dynamic Resource
34 6112 Wrong Component
3.5 413x Initial, Default Values

* B. Beizer, Software testing techniques. Dreamtech Press, 2003.

Lion(String name){

super(name);

this.
this.
this.

this
this

this|
this |
this|

maneSize =0.0;

L 6125 Parameter

color0OfMang = "brown" fe—

lionType =|"African";

Value

setEatingHabits

.setSpecies("Lion"); l
.setConservationStatus("Not Extinct"));
this.

("Carnivores");

setFeatherColor
setBeakShape("S
setEggSize(25);

("A11 Colors");
hort and Conical");

[~ 6112 Wrong Component

15

Data Collection

Subjective Analysis Behavior Tracking

Recall & Observer Biases CodeGRITS: JetBrains Plugin

IIIIIIIIIII

Complete With

1 1
! |
: ! : I
I ! I I
| ! | |
I ! I I
I ! I I
I ! I I
| ! | |
I ! 1 I
) . | I
; b Video Recording | . ! IDE Tracking i
1 | 1
I ! I Interactions within IDE :
I ! I I
| ! | |
I ! I I
I ! I I
I ! I I
| ! | |
I ! I I
I ! I I
| : 1 :

Survey
0 Eye Tracking
(] Eye movements

L@ Intervi
)5T'r='.J nterview

CodeGRITS - Gaze Recording & IDE Tracking System

[OUTPUT_DIR]

/Main.java" timestamp

IDE Tracking 5 e

. . t" path="/src/Main.java’
<action id="GotoDeclaration" path="/src/Main.java" tim¢

<action Debug" path="/src/Main.java" timestamp="16¢
<action NewClass" path="/src" timestamp="169621711¢
<action id="RenameElement" path="/src/ABC.java" timest:

</actions>

<typings>

<typing character="s"
<typing character="y"
</typings>
<files>
<file id="fileClosed" path="/src/Main.java" timestamp='
<file id="selectionChanged" new_path="/src/ABC.java" ol
timestamp="1696216679330"/>

/src/Me
path="/src/M:

</files>
<mouses>
<mouse i

</mouses>
</ide_tracking>

41666666666" gaze_point_y

I.—.

'mousePressed" path="/src/DEF.java" timestamp="1696217839651" x
<mouse id="mouseReleased" path="/src/DEF.java" timestamp="1696217840187"

START_TIMESTAMP]
_— =
— 1ide_tracking.xml
— eye_tracking.xml

0.17407407407407408"

archives
— [ARCHIVE_TIMESTAMP_1].al
— [ARCHIVE_TIMESTAMP_2].al

|

r_

|

|

|

— screen_recording
|

|

|

|

— video_clip_1.mp4
— video_clip_2.mp4
.

— frames.csv

'642"
642"

120"/>
"120"/>

gaze_validity="1.0"

"
Eye TraCKlng 5662841796875" pupil_validity="1.0"/>
541666666666" gaze_point_y="0.17407407407407408" gaze_validity="1.6"
pupil_diameter="2.7188568115234375" pupil_validity="1.8"/>
<location column="25" 1line="2" path="/src/Main.java" x="820" y="150"/>
<ast_structure token="println" type="IDENTIFIER">
<level end="2:26"
<level end="2:26"
<level end="2:42"
<level end="2:43"
<level end="3:

start="2:19" tag="Psildentifier:println"/>

tag

"PsiReferenceExpression:System.out.printiln"/>

start="2:8" tag="PsiExpressionStatement"/>

5" start="1:43" tag="PsiCodeBlock"/>
5" start="1
<level end="4:1"

<level end="3: " tag="PsiMethod:main"/>

start="0:0" tag="PsiClass:Main"/>
</ast_structure>
</gaze>

</eye_tracking>

"PsiMethodCallExpression:System.out.println("Hello world!&qy

cormares

2o Structre

Live Demo

ides
1698105317285
4 out
ste
@ Twosum
i hello el
& hellajs
hello_world py
o HelloWorkdiml
> W% External Ubraries
9 Scratches and Consoles

»

e

utdl.HashNap;
inport Java,util,Map;

public class TwoSua {

public static int[] findTwoSua(int() nums, int target) {
Mapeinteger, Integer> nusMap = nes HashMap<>(); o

for (int

1 < nums.length; fes) {
int complement = target - nuas(i];
1f (nusMap.containskey(conplenent)) {

return nen Int(]{nualiap.get(conplenent), 1};

nuetap put(nvesii), 1);
}

return null;

public static void main(Steing(] args) {
intl) noms = {2, 7, 11, 15};
int target = 9;

int() resvlt = findTwoSum(nuss, target);
1f (result != null) {
System.out.printin(*Indices found: * + result(0) + *, * & result(1]);
} else {
Systea,out.println(*No solution found");
}

)
P VeeaConvol > fun 1000 O Proviems O Temind O Sences A\ Buld
[Add label: Successfuly add label *Passed Case 2.1°1 (21 minutes ago)

[Timestamp] 1698111252591

[Path] /src/TwoSum.java

[IDE Tracking] Typing h

[Eye Tracking] Line: 5 Col: 65
Type: end_of_line_comment
Token: //use hash

667 LF UTFS 4spaces

17

2024 IEEE/ACM 46th International Conference on Software |

Paper

CodeGRITS: A Research Toolkit
Trackin

Ningzhi TangT, Junwen An’
Yu Huang?, Collin Mc!
{ntang,jan2,mchen24,abansal1,cme, ol
*University of Notre D:

*Vanderbilt Univers|

ABSTRACT

Traditional methodologies for exploring programmers’ behaviors
have primarily focused on capturing their actions within the In-
tegrated Development Environment (IDE), offering limited view

into their cognitive processes. Recent emergent work starled us-
ing; eye-tracking techniques in software engincering (SE) research,
However, the lack of Lools specifically designed for coordinated

‘mentary approaches. To address this gap, we present CodeGRITS,
o specifically designed for SE. rescarchers. CodeGRITS is
built on top of Tnteli's SDK, with wide compat
entire family of JetBrains IDEs to track developers
tions and eye gaze data. CodeGRITS also features various practical
features for S research (e, actvity labeling) and a real-time API
that provides interoperability for integration with other rescarch
instruments and developer tools. The demo videa is available at
hittps://youtube/d-YsJ W2NML

KEYWORDS
IDE Extension/Plugin, Developer Behavior Analysis, Eye Tracking

1 INTRODUCTION

Tracking developers’ programming behavior provides valuable in-
sights into how they engage in the software development pro-
cess 19, 14,19), and helps evaluate and improve the usability of pro-

dtools in i (SE)
rescarch Traditional approaches focus mainly on tracki
developers” interactions with the integrated development environ,
ment (IDE), such as keystrokes, code changes, and IDE-spe

s (11, 27], However, while these approaches ean identify
ner did they are limited in explaining “why they
arch relies mai rveys
to understand what developers were thinking and why they made

interviews

ot sthors contribused el o this research.

page. Copyriphtsfo companent o this work owned b

ador . Rt permiasions rom permiscionsdascm. oy,
1CS8 Campanion 2, April 11-20, 2024, Lishon, Portupal
M
7840070302 112410 $15.00
it on 1011457363078 3640057

Welcome to CodeGRITS

@ 4 News! 4

Website

Demo Track. Welc

We would present CodeGRITS at I

CodeGRITS stands for Gaze Recording & IDE Tracking System. It's a p
software engineering researchers. CodeGRITS is built on top of Inteli]

g devices, to track developers' IDE intera

IDEs and Tobil eye-tracki

documentation,

e
B Cimiena
A
N T

The dota collected by CodeGRITS can be used by empirical SE resear
eye goze. CodeGRITS also provides o real-time data AP for future piy

support tools.

(@© CodeGRITS is still in its developmental stage as a research toof
particularly for those involved in empirical software engineerin
through GitHub

e for any suggestions or issues, aiding in it

For any inquiries, please email us at ntang@nd.edu or jan2@nd

hesitate to email s for setup support. We are delighted to pro

environment.

Cross-platform and Multilingual Support

CodeGRITS provides cross-platform support for Windows, mac
JetBrains IDEs, including InteliJ IDEA, PyCharm, Wel
CodeGRITS could extract the abstract syntax tree (AST) structur]

Storm, etc

supports them, including Java, Python, C/C#+, JavaScript, etc.

& macos Support &

S CodeGRITS »

P main - | § 38canches ©1Tags

@ Trenoingahi coc

w gitrubiwordions

e

M orecle/urapper
 ste
 somain

D sitgrore

[) AUTHORS

0 buicgratexts
D orevepropertes
D gacen

D grensst

D retpem

D settingsgradests

[0 README & M iicense

CodeGRITS

Q Gotofie

update retypeymi

updated

firstcomr

fistcommit

typo

webs

macdoc

setting

fst comm

fist commt

first cor

Javagoc

rename & start/stop/pause/resume track

CodeGRITS stands for Gaze Recording & IDE Tracking System. It's a plugin developed by the SaNDuw
specially designed for empirical software engineering researchers. CodeGRITS is built on top of

h the entire family of JetBrains IDEs and Tobil eye-tracking devices, to track developers' IDE

with vide compatibilty wi
interactions and eye gaze data,

Pouse/Resume Tracking

Source Code

Ueveioper senavior ana tye Iracking in
1DE

& codegritsgithubio/CodeGRITS/

port repository

Releases 1

© Iniial Release

Packages

Contributors 2

@ oo o
@ it

Deployments &2

© oithub-pages

Languages

ichLaband is —

o HMLEE @ e

tel) Platform

o o2

® pponoz

Configuration

Functonales

&

Pro-ot Labale

o

S, st Tackng

bsite's source code is stored in the.

Trackers

” 0 Trockar
@ oo

Screen
Recorder

S o

/

Stop
Tracking|

Data Output

o
e

) s
N

03]

Sorsen
Recoring

folder of this repository and eployed via GitHub Pages. The
JavaDoc documentation i located in the ./site/docs folder of this repository. They are archived together with the

codegrits.github.io/

CodeGRITS

18

High-Level Behavior Aggregation

TABLE II

CATEGORIZATION OF DEVELOPER BEHAVIOR EMERGED FROM IDE AND EYE TRACKING DATA.

Index |

Behavior

Tracking Data

Reading Document
Reading Code
Reading Comment

Consecutive fixations on the instructional document
Consecutive fixations on the code
Consecutive fixations on the comment

TS0 AW =

Switching Files
Scrolling
Tracing Code
Running for Output
Employing Debugger
Invoking Copilot
Utilizing Clipboard
Keystrokes Typing

Opening, closing, or changing the selection of a file
Scrolling a file via mouse wheel, arrow keys, or touchpad gestures
Searching tokens, finding usages or going to declarations
Running the class to obtain execution output
Utilizing debugger and its corresponding features (e.g., toggling breakpoints)
Accepting, rejecting, or browsing code generated from Copilot

Copying, cutting, or pasting contents

Typing characters using keystrokes

19

RQ1. Perceptions and Strategies of Developers

LLM-generated code performs well in terms of coding style and readability.

“[LLM-generated code] does follow 7 (P21)
“It writes variable names or method names.” (P25)

“It contains compared to human-written code.” (P14)

20

RQ1. Perceptions and Strategies of Developers

However, it makes mistakes that are uncommon for human developers.

“l was really

when | saw the

7 (P21)

String path = "
white (i '=0 || j !'=0) {

Sample Input

WO WwWhKWM
H Ul WwwWw
B NONN
NWNKH W
BB HEN O

Sample Output
12
132231

if (1. == B9)d
path =} "2 "} + path;
i

} else if [j =9 0) {
path = "3 "} + path;
i

path =} "3 "J + path;
L3

} else {
path =| "2 " + path;
i

+

path ={"1 "|+ path;

S

} else if (tabl=[i - 1]1[j] < table[il[]j - 11) {

21

RQ1. Perceptions and Strategies of Developers

Developers have shifted their attention focus from details to structure.

“‘Humans are more error-prone than Copilot when it comes to [..]”
“[...] | don’t think Copilot can generate really complicated . LLM-generated

Similar code tends to be either all correct or all incorrect.” (P25)

012!—: -
- =

22

RQ1. Perceptions and Strategies of Developers

Developers switch their fixations consecutively between code and prompts.

“UI..] between their expectation and code output.” (P14)
“Switching between instructions and code is .7 (P3)
D\ T D\ z AN
Pattern #1 n = 4507 “ n = 3086 n = 1907 “ n = 1451
U
JAVA JAVA JAVA
Reading Code Scrolling Reading Code Scrolling Reading Code

N N N
Pattern #2 n=2650 | /2| =135 n=e8s | /2| =405
—_— | == —> —_— | == ———
JAVA JAVA JAVA

Reading Code Reading Comment Reading Code Reading Comment Reading Code

23

RQ1. Perceptions and Strategies of Developers

Developers use Copilot to generate comments to facilitate understanding.

“If a line of code has a bug, generating comments from it will help me .7 (P25)

public class BinarySearch {

Peturns the index of the element if found, otherwise returns -1
No usages new
public static int binarySearch(int[] arr, int element) {
int left = 0, right = arr.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (arr[mid] == element) return mid;
if (arr[mid] < element) left = mid + 1;
else right = mid - 1;
}

return -1;

24

RQ2. Effects of Code Provenance Knowledge

If uninformed, developers may not distinguish code provenance.

I the code
was generated by LLMs.

I

25

RQ2. Effects of Code Provenance Knowledge

If informed, developers performs better at code validation and repair.

Bug fix rate: . Performed better on bugs.

Success Rates of Two Groups onrent Bugs

1.0 Informed

-Informed
0.6 ‘E!E’{!!!’

o
o

Success Rate

231x
3226.4
3126
231x
6125
614x
6125
6112
6125
4164
6112
413x

RQ2. Effects of Code Provenance Knowledge

If informed, developers use Copilot more and Clipboard less.

@ | Substitute> Gx) E

Copilot Cut Copy Paste

27

RQ2. Effects of Code Provenance Knowledge

If informed, developers trace code more frequently.

Al @

Find Goto Saccade Time

28

RQ2. Effects of Code Provenance Knowledge

If informed, developers experienced higher cognitive workload.

6.39 > 5.60

<>

Self-Reported Effort

(via NASA-TLX)

254.3 > 206.7
0.493 > 0.438

Fixation Time &
Average Fixation Duration

29

Implications

LLMs make distinct types of mistakes and Adaptive systems specifically designed
developers have shifted attention from > | based the unique characteristics of
details to structure. LLM-generated code.

Usage of Copilot to generate inline Improved interfaces to support leveraging
comments, but with frequent switching :> LLM to understand and modify the code,
between code and prompts. while reducing the switching costs.
Developers may not realize the code Detecting and informing developers of the

provenance, yet it impacts their behavior code provenance information would
and performance. enhance interactions with LLMs.

H

30

Future Work

Enhancing Interactions with LLM

Code Understanding & Modification
Fextual-Representation

Multi-Level

Syntax-Aware

// Returns the element’s index if present in the array; otherwise, returns -1
public static int binarySearch(int[] arr, int element) {

int left = 0, right = array.length - 1;
while (left <= right) {|'
int mid = left + (right - left) / 2;
if (arr[mid] == element) return mid;
if (arr[mid] < element) left = mid + 1;
else right = mid - 1;

b
return -1;
} A
v (@ 1Method:binarySearch Compares the middle element with the
v 1.1 Declaration target and updates the left and right 0
v £ 1.2 While pointers.
@& 1.2.1 Declaration
& 1.2.21f [compares] Tests whether the middle element
& 123If e [with] is the left-most target and 0
v 1.3 Return updates the left and right pointers.
while (left <= right) {
int mid = left + (right - left) / 2;
« if (arr[mid] == element) {

while (mid > 0 && arr[mid - 1] == element) {
mid--;
b

return mid;

EJ

31

VL:THCC % UNIVERSITY OF
<+ CJNOTREDAME \/ VAYRERELT

LIVERPOOL, UK 2024

Developer Behaviors in Validating and Repairing LLM-Generated Code Using IDE and Eye Tracking

Ningzhi Tang*, Meng Chen*, Zheng Ning, Aakash Bansal, Yu Huang, Collin McMillan, Toby Jia-Jun Li
{ntang, mchen24, zning, abansal1, cmc, toby.j.li}@nd.edu, yu.huang@vanderbilt.edu

. . (LLMs make distinct types of mistakes and h (Adaptive systems specifically designed
N | ngZhl Tang developers have shifted attention from ———> | based the unique characteristics of
details to structure.) L LLM-generated code.)
& nztang.com
t d.ed (Usage of Copilot to generate inline h (Usage of Copilot to generate inline
8 n ang@n -edu comments, but with frequent switching ———> | comments, but with frequent switching
. . between code and prompts. between code and prompts.
YW @TangNingzhi N promp J . il)
. . 4 . N (. . .)
nlngzhl_tang Developers may not realize the code Detecting and informing developers of the
provenance, yet it impacts their behavior ———> | code provenance information would
L and performance.) L enhance interactions with LLMs.)

This project was support in part by NSF
grants CCF-2211428 and CCF-2100035. Any
opinions, findings, or recommendations
expressed here are those of the authors and '\
do not necessarily reflect the views of the i
sponsors.

IR, Nacional
- i Google €3
codegrits.github.io/ Foundation NVIDIA.

CodeGRITS

32

https://www.nztang.com/
mailto:ntang@nd.edu
https://twitter.com/TangNingzhi

