
Towards Effective Validation and Integration of
LLM-Generated Code

Ningzhi Tang
University of Notre Dame

VL/HCC 2024 Graduate Consortium

* Source: GitHub Copilot, retrieved from https://github.com/features/copilot

CodeWhisperer

2

LLMs Transform Developer Workflows

https://github.com/features/copilot

3

(3) Understand,
Validate & Modify

(1) Prompt

(2) Respond

4

(3) Understand,
Validate & Modify

(1) Prompt

(2) Respond

Empirical Understanding

Interaction Design

5

(3) Understand,
Validate & Modify

(1) Prompt

(2) Respond

W1. Behavior
Tracking W3. Improved

Representation

InformEnable

W2. Empirical
Understanding

Ningzhi Tang et al. “CodeGRITS: A Research Toolkit for Developer Behavior and
Eye Tracking in IDE”. ICSE-Demo 2024.

6

CodeGRITS - Gaze Recording & IDE Tracking System

Video Recording

Survey

Interview

Subjective Analysis
Recall & Observer Biases

Complete With

Behavior Tracking
CodeGRITS: JetBrains Plugin

IDE Tracking
Interactions within IDE

Eye Tracking
Eye movements

7

IDE Tracking

Eye Tracking

Live Demo

CodeGRITS - Gaze Recording & IDE Tracking System

8

codegrits.github.io/
CodeGRITS

CodeGRITS - Gaze Recording & IDE Tracking System

9

(3) Understand,
Validate & Modify

(1) Prompt

(2) Respond

W1. Behavior
Tracking W3. Improved

Representation

InformEnable

W2. Empirical
Understanding

Ningzhi Tang et al. “Developer Behaviors in Validating and Repairing
LLM-Generated Code Using IDE and Eye Tracking”. VL/HCC 2024.

10

Research Question

RQ1. What are developers’ perceptions and strategies that is specific for
validating and repairing LLM-generated code?

RQ2. How does awareness of code provenance (i.e., whether the code is
LLM-generated or human-written) affect code validation and repair behavior?

🛠 Specifically designed for coding

🌍 Widely used

📚 Previously studied in other works

Study Design

🏫 University of Notre Dame
 28 participants

⌛ Programming Experience
 5.5 years (average)

11

Informed Group (14) Non-Informed Group (14)

Algorithm Design GUI Programming Object-Oriented
Programming

🔧 Validate and Repair Copilot-Generated Code

Study Result

12

LLMs make distinct types of mistakes that are uncommon for human developers.
“[...] tend to hard-code test samples and generate hallucinated objects.” (P21)

Developers like to use LLMs to generate inline comments for understanding.

Developers display a high switching workload between code and prompts.

When uninformed, about 80% of developers cannot distinguish code provenance, and they fixed
fewer bugs and showed different behaviors.

💡 Adaptive systems are designed based on the unique characteristics of LLM-generated
code, as well as improved awareness of code provenance.

13

(3) Understand,
Validate & Modify

(1) Prompt

(2) Respond

W1. Behavior
Tracking W3. Improved

Representation

InformEnable

W2. Empirical
Understanding

“Tree Representations Enabled Multi-Level and Syntax-Aware LLM Code
Interactions”. In Progress.

Developers Using LLMs to Understand and Modify LLM-Generated Code

Particularly Those Unfamiliar With Current Technology

Current Interaction Paradigm: Textual Representation

14

Inline Comment/Code GenerationMouse Selection + Chatting

Developers Using LLMs to Understand and Modify LLM-Generated Code

Particularly Those Unfamiliar With Current Technology

Current Interaction Paradigm: Textual Representation

It works well for intuitive and flexible use... But are there any limitations?

15

(1) Unsupporting Multi-Level Interaction

It mainly suggests local edits, but developers
need to understand and modify code at different
levels of abstraction, from local statements to
overall functionality.

(2) Unawareness of Code Syntax

It inhibits the design of many syntax-aware
interactions, and may reduce the accuracy and
context-awareness needed to support
developers effectively.

New Representations to Support Multi-Level and Syntax-Aware Code Interactions

16

Tree Representation of Code Built from the Abstract Syntax Tree (AST)

Text Tree

Abstract Syntax
Tree (AST)

Interaction Features to Support LLM
Code Understanding & Modification

Example Feature: Multi-Level Code Explanations

17

Understand the code at different levels of detail with less effort.

Explain Node

Example Feature: Procedurally Prompted Editing

18

Explain Node

Modify
Explanations

Prompt LLM to
Modify Code

Tree Representations for Multi-Level and Syntax-Aware Code Interactions

19

Text Tree

Abstract Syntax
Tree (AST)

Feature 1. Multi-level Code Explanations

Feature 2. Procedurally Prompted Editing
More …?

20

W3. Improved
Representation

W1. Behavior
Tracking

Enable Inform

Extend

W2. Empirical
Understanding

(3) Understand,
Validate & Modify

(1) Prompt

(2) Respond

F1. Multi-file
Assistance

“Tree Representation Based Interaction for Multi-File Code Validation and
Modification”

Future Work 1. Extending Tree Representation to Support Multiple Files

What will happen when LLM generate code across multiple files?

21

(1) LLM edits should be validated individually to address static and runtime errors.

(2) Categorizing and aggregating them at different abstraction levels aid validation.

Package Migration

Program Translation

v0.9-alpha v1.0-beta

💡 Multi-level and syntax-aware interactions may still be valuable for multi-file scenarios.

22

W3. Improved
Representation

W1. Behavior
Tracking

F1. Multi-file
Assistance

Enable Inform

Extend

W2. Empirical
Understanding

(3) Understand,
Validate & Modify

(1) Prompt

(2) Respond

F2. Program
Reflection

“Program Reflection Through Developer Behavior Tracking and LLM Insights
Generation”

Future Work 2. Enabling Program Reflection Through Behavior Tracking

Self-reflection enhances developers’ ability to evaluate and improve their programming skills.

23

🛠 Method Gap: How to model the transition from low-level behaviors to high-level insights?

🧩 Interface Gap: How to effectively convey data-driven insights to human developers?

IDE Interactions & Eye Tracking
(CodeGRITS)

Low Level Behaviors

Programming Practice
Understanding & Suggestions

High-Level Insights
Observation: Frequently jumps back and

forth between multiple files.
Suggestion: Use IDE features like bookmarks
or call hierarchy for more efficient navigation.

Acknowledgment

24

This project was support in part by NSF grants
CCF-2211428 and CCF-2100035. Any opinions,
findings, or recommendations expressed here are
those of the authors and do not necessarily reflect the
views of the sponsors.

Towards Effective Validation and Integration of LLM-Generated Code
Ningzhi Tang, University of Notre Dame

25

Ningzhi Tang
 nztang.com

 ntang@nd.edu

 @TangNingzhi

 ningzhi_tang

codegrits.github.io/
CodeGRITS

https://www.nztang.com/
mailto:ntang@nd.edu
https://twitter.com/TangNingzhi

W3. Improved
Representation

W1. Behavior
Tracking

F1. Multi-file
Assistance

Enable Inform

Extend

W2. Empirical
Understanding

(3) Understand,
Validate & Modify

(1) Prompt

(2) Respond

F2. Program
Reflection

